
LABORATORY FOR MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

N MIT/LCS/TM-406

N ON THE CORRECTNESS OF

ORPHAN MANAGEMENT
ALGORITHMS

Maurice Herlihy
Nancy Lynch

Michael Merritt
William Weihl i)TIC

.LECTE
OCT30 1989

h1b pval el.,m a N.

August 1989

545 TECHNOLOGY S01 .ARE. CAMBRIDGE. MASSACHUSETTS 021 9

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM-406 N00014-83-K-0125 and N00014-85-K-0168

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
MIT Laboratory for Computer (if applicable) Office of Naval Research/Department of Navy

Science I
6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Sa. NAME OF FUNDING/SPONSORING ,8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

On the Correctness of Orphan Management Algorithms

12. PERSONAL AUTHOR(S)
Herlihy, M., Lynch, N., Merritt, M., and Weihl, W.

13a. TYPE OF REPORT 113b TIME COVERED 114. DATE OF REPORT (Year,Month, Day) 5s PAGE COUNT
Technical FROM TO 1989 August 52

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP orphans, transactions, atomic transactions, databases,

distributed computing, distributed databases, serializabil-

ity, concurrency control, fault-tolerance

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
In a distributed system, node failures, network delays and other unpredictable occurrences

can result in orphan computations--subcomputations that continue to run but whose results

are no longer needed. Several algorithms have been proposed to prevent such computations
from seeing inconsistent states of the shared data. In this paper, two such orphan manage-

ment algorithms are analyzed. The first is an algorithm proposed at Carnegie-Mellon. The

algorithms are described formally, and complete proofs of their correctness are given.

The proofs show that the fundamental concepts underlying the two algorithms are very simi-

lar in that each can be regarded as an implementation of the same high-level algorithm.

By exploiting properties of information flow within transaction management systems, the
algorithms ensure that orphans only see states of the shared data that they could also see

if they were not orphans. When the algorithms are used in combination with any correct

concurrency control algorithm, they guarantee that all computations, orphan as ,.'ell as non-

20 DISTRIBUTION YAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

E' UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Judy Little, Publications Coordinator (617) 253-5894 1

DD FORM 1473, 84 MAR 83 APR edition mayb;used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

OilS Gow irsnmt Pirbktig Oflm: "-06-M47

Unclassified

n For

On the Correctness of Orphan Management Algorithms .t

Maurice Herlihy By
Nancy Lynch Distribution/-

Michael Merritt 3 Availability Codes
William Weihl 4 "A v al and/Or

Dist special

Abstract I I_

In a distributed system, node failures, network delays and other unpredictable occurrences can
result in orphan computations--subcomputations that continue to run but whose results are no
longer needed. Several algorithms have been proposed to prevent such computations from
seeing inconsistent states of the shared data. In this paper, two such orphan management
algorithms are analyzed. The tKrst is an algorithm implemented in the Argus distributed
computing system at MIT, and the second is an algorithm proposed at Carnegie-Mellon. The
algorithms are described formally, and complete proofs of their correctness are given.

The proofs show that the fundamental concepts underlying the two algorithms are very similar
in that each can be regarded as an implementation of the same high-level algorithm. By
exploiting properties of information flow within transaction management systems, the algorithms
ensure that orphans only see states of the shared data that they could also see if they were not
orphans. When the algorithms are used in combination with any correct concurrency control
algorithm, they guarantee that all computations, orphan as well as non-orphan, see consistent
states of the shared data.

Keywords: orphans, transactions, atomic transactions, databases, distributed computing,
distributed databases, serializability, concurrency control, fault-tolerance.

'Sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976 (Amendment
20), under Contracts F33615-84-K-1520 and F33615-87-C-1499, monitored by the Avionics Laboratory, Air Force
Wright Aeronautical Laboratories, Wright-Patterson AFB. Address: CMU Department of Computer Science,
Pittsburgh, PA.

2Supported by the National Science Foundation under Grants DCR-83-02391 and CCR-86-11442, the Defense
Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125, the Office of Naval Research
under Contract N00014-85-K-0168, and the Office of Army Research under Contract DAAG29-84-K-0058.
Address: MIT Laboratory for Computer Science, 545 Technology Sq., Cambridge, MA.

IAddress: AT&T Bell Laboratories, Murray Hill, NJ.

4Supported by an IBM Faculty Development Award, the National Science Foundation under grants
DCR-85-100014 and CCR-8716884, and the Defense Advanced Research Projects Agency (DARPA) under
Contract N00014-83-K-0125. Address: MIT Laboratory for Computer Science, 545 Technology Sq., Cambridge,
MA.

1. Introduction
Nested transaction systems have been explored in a number of recent research projects (e.g.,

see [8, 23, 21, 1, 7]) as a means for organizing computations in distributed systems. Like
ordinary transactions, nested transactions provide a simple construct for masking the effects of
concurrency and failures. Nested transactions extend the usual notion of transactions [31 to
permit concurrency within a single transaction. They also provide a greater degree of fault-
tolerance by isolating a transaction from the failures of its descendants.

In distributed systems, various factors, including node crashes and network delays, can result
in orphan computations-subcomputations that continue to run even though their results are no
longer needed. For exame, ir the Argus system [8], a niode makhij g renote request may give
up because a network partition or some other problem prevents it from communicating with the
other node. This may leave a process running at the called node; this process is an orphan. The
orphan runs as a descendant of the transaction that made the call. Since the caller gives up by
aborting the transaction that made the call, the orphan will not have any permanent effects on the
observed state of the shared data.

As discussed in [9, 16, 17], even if a system is designed to prevent orphans from permanently
affecting shared data, orphans are still undesirable, for two reasons. First, they waste resources:
they use processor cycles, and may also hold locks, causing other computations to be delayed.
Second, they may see inconsistent states of the shared data. For example, a transaction might.
read data at two nodes, with some invariant relating the values of the different data objects. If
the transaction reads data at one of the nodes and then becomes an orphan, another transaction
could change the data at both nodes before the orphan reads the data at the second node. This
could happen, for example, because the first node learns that the transaction has aborted and
releases its locks. While the inconsistencies seen by an orphan should not have any permanent
effect on the shared data in the system, they can cause strange behavior if the orphan interacts
with the external world; this can make programs difficult to design and debug.

Several algorithms have been proposed to prevent orphans from seeing inconsistent
information. Early work in the a,-a ircludes [19], which describes algorithm- for detecting and
eliminating orphans that arise . car3o of node crashes. Nelson's work did not assume an
underlying transaction mechanism, :t was difficult to assign simple semantics to abandoned
computations. Recent work [24, 9, 16, 17] has studied orphans in the context of a nested
transaction system, in which an abandoned computation can be aborted, preventing it from
having any effect on the state of the system. The goal of the algorithms in [24, 9, 16, 17] is to
detect and eliminate orphans before they can see inconsistent information.

1.1. New Results
In this paper we give formal descriptions and correctness proofs for the two orphan

management algorithms in [9] and [16, 17]. The algorithm in [9] is currently in use in the Argus
system.5 Our proofs are completely rigorous, yet quite simple. In addition, both the

5Our analysis covers only orphans resulting from aborts of transactions that leave running descendants; there is
another component of the Argus algorithm that hzndles orphans that result f. ., node crashes in v.hich the contents
of volatile memory are destroyed

2

presentations and the proofs follow the intuitions that the designers have used in describing the
algorithms. Although the two algorithms appear to be quite different, our proofs show that the
fundamental concepts underlying them are very similar; in fact, each can be regarded as an
implementation of the same high-level algorithm.

Our results relate the behavior of a system, S', containing an orphan management algorithm to
that of a corresponding system, S, having no orphan management; namely, S' must "simulate"
S in the sense that each transaction in S' must see a view of the system that it could see in an
execution of S in which it is not an orphan. (A transaction's "view" of the system is its
sequence of interactions with the system, including the results of operations and subtransactions
invoked by the transaction.) When system S includes a concurrency control algorithm that
ensures that non-orphans see consistent views, our results imply that in S', all transactions,
orphan as well as non-orphan, see consistent views. This result provides formal justification for
an informal claim sometimes made by the algorithms' designers, that the algoritnms work in
combination with any concurrency control algorithm.

The formal model used in this paper is based on that in [11, 12, 4]. In [11, 121, Lynch and
Merritt develop a model for nested transaction systems including aborts, and use the model to
show that an exclusive locking variation of Moss's algorithm [18] ensures correctness for non-
orphans. The paper [4] contains improvements to the basic model in [11. 12], plus proofs that
Moss' read-write algorithm and a more general commutativity-based locking algorithm also
ensure correctness for non-orphans. In this paper we use the same model to describe the two
orphan management algorithms mentioned above, to state correctness properties, and to prove
the algorithms correct.

1.2. Related Work
Earlier work on verifying the Argus orphan management algorithm appears in [6]. This work

is based on an earlier model for nested transaction systems that is described in [10]. The results
in [6] are less general than those presented here, since they apply only to the specific
concurrency control algorithm (nested locking) used by Argus. Moreover, the presentation there
is much more complex than the one in this paper. Much of the complexity in [6] arises because
the treatments of concurrency control and orphan management are intermingled, whereas here
we are able to separate the two. The model in [11, 12, 4] provides a convenient set of concepts
for describing this separation.

Other work using the model of [11, 12, 4] includes [5, 2, 20]; these papers prove correctness of
algorithms for replica management, timestamp-based concurrency control and distributed
transaction commit, respectively. The fact that it is possible to use the model to explain such a
variety of transaction-processing algorithms is strong evidence that it is a very useful tool for
modeling and analyzing nested transaction systems.

1.3. Organization of this Paper
The remainder of the paper is organized as follows. Section 2 contains some preliminary

mathematical definitions and a brief description of I/0 automata, which serve as the formal
foundation for our work. This section may be skipped on first or cursory reading, and is
included in order to make the technical presentation of this paper entirely self-contiined. Section

3

3 contains a definition of basic systems, a general class of transaction-processing systems to
which our results apply. These are nested transaction systems in which orphans may occur, and
for which the problem of managing orphans can be precisely and intuitively stated. A basic
system models the components of a nested transaction system as 1/O automata. Each user
program is modeled as a transaction automaton, and the rest of the system (which may include a
division into objects, and may include concurrency control and recovery algorithms) is modeled
as a single basic database automaton. A basic system is said to manage orphans correctly if it
ensures a property called "serial correctness" for all transactions, orphans and non-orphans.

Section 4 contains some definitions and results about the dependencies among different events
in a basic system; these concepts underlie the results in the rest of the paper.

Sections 5 through 8 contain the principal contributions of this paper, in which we pi,, e
correctness of the two orphan management algorithms in [9] and [16, 17]. Our proofs have aninteresting structure. We first define a simple abstract algorithm that uses global information

about the history of the system, and show that it ensures that orphans see consistent views. We
then formalize the Argus algorithm and the clocked algorithm from [16] in a way that only
requires the use ot local information, and show that each simulates the more abstract algorithm.
The simulation proofs are quite simple, and do not require re-proving the properties already
proved for the abstract algorithm. The correctness of the Argus and clocked algorithms then
follows directly from the correctness of the abstract algorithm.

Each orphan management algorithm is described as a system obtained via simple
transformations of an arbitrary basic system without orphan management. Each of these systems
contains the sarne transactions as the given basic system, but each manages orphans using a
different basic database. The abstract algorithm is modeled by the filtered database, which
maintains information about the global history of the system, and uses tests based on this history
information to prevent orphans from learning that they are orphans. The Argus database models
the behavior of the Argus orphan management algorithm [9]; it manages orphans using tests
based on local information about direct dependencies among system events. The strictly filtered
database models another abstract algorithm, introduced to simplify the proof of the correctness
of the algorithm in [16]; it also uses tests based on global history information, and is even more
restrictive than the filtered database. Finally, the clock database models the orphan management
algorithm from [16]; it manages orphans using information about logical clocks. Each of these
four databases is described as the resuit of a transformation of the basic database.

We prove that the filtered system (the system consisting of the transactions and the filtered
database) "simulates" the basic system in the sense that all transactions, including orphans, see
a "view" that they could see in the basic system, in an execution in which they are not orphans.
It follows that if the basic system ensures serial correctness for non-orphan transactions, then the
filtered system ensures serial correctness for all transactions. We also prove that the Argus
system "implements" the filtered system, and so inherits the same correctness property.
Similarly, we prove that the clock system implements the strictly filtered system, which in turn
implements the filtered system, thus showing that the clock system has the same correctness
property as the filtered system.

Section 9 makes some of the preceding general concepts more concrete by describing two
particular types of basic systems, taken from other work using this model. The first kind of basic

4

system, a "generic system," is appropriate for describing locking algorithms, while the second
kind of basic system, a "pseudotime system," is appropriate for describing timestamp-based
algorithms. Both kinds of systems specialize the notion of a basic system by splitting the basic
database automaton into two kinds of components: an "object automaton" for each object in the
system and a "controller automaton" that links the transactions and objects together. The
concurrency control and recovery performed by the system is encapsulated within the object
automata. The two kinds of systems differ in that they have slightly different interfaces between
the objects and the controller. Particular information flow dependencies are described for both
of these kinds of basic systems.

Section 10 contains a summary of our results and some suggestions for further work.

2. Formal Preliminaries
An irreflexive partial order is a binary relation that is irreflexive, antisymmetric and transitive.

The formal subject matter of this paper is concerned with finite and infinite sequences
describing the executions of automata. Usually, we will be discussing sequences of elements
from a universal set of actions. Formally, a sequence P of actions is a mapping from a prefix of
the positive integers to the set of actions. We describe the sequence by listing the images of
successive integers under the mapping, writing 13 = 7rl2.t3 6 Since the same action may occur
several times in a sequence, it is convenient to distinguish the different occurrences. Thus, we
refer to a particular occurrence of an action in a sequence as an event. Formally, an event in a
sequence P = 7tjit2 .. , of actions is an ordered pair (iit), where i is a positive integer and ir is an
action, such that ti, the it action in 13, is 7t.

A set of sequences P is prefix-closed provided that whenever 3 E P and y is a prefix of 3, it is
also the case that y E P. Similarly, a set of sequences P is limit-closed provided that any
sequence all of whose finite prefixes are in P is also in P. We refer to any nonempty, prefix-
closed and limit-closed set of sequences as a safety property.

2.1. The Input/Output Automaton Model
In order to reason carefully about complex concurrent systems such as those that implement

atomic transactions, it is important to have a simple and clearly defined formal model for
concurrent computation. The model we use for our work is the input/output automaton
model [14, 15]. This model allows careful and readable descriptions of concurrent algorithms
and of the correctness conditions that they are supposed to satisfy. The model can serve as the
basis for rigorous proofs that particular algorithms satisfy particular correctness conditions.

This subsection contains an introduction to a simple special case of the model that is sufficient
for us,, in this paper. In particular, in this paper we consider properties of finite executions only,
and do not consider "liveness" or "fairness" properties.

Each system component is modeled as an "I/0 automaton," which is a mathematical object

6We use the symbols 03, y,... for sequences of acuons and the symbols ir, 0 and 4 for individual actions.

somewhat like a traditional finite-state automaton. However, an I/O automaton need not be
finite-state, but can have an infinite state set. The actions of an I/O automaton are classified as
either "input," "output" or "internal." This classification is a reflection of a distinction
between events (such as the receipt of a message) that are caused by the environment, events
(such as sending a message) that the component can perform when it chooses and that affect the
environment, and events (such as changing the value of a local variable) that a component can
perform when it chooses, but that are undetectable by the environment except through their
effects on later events. In the model, an automaton generates output and internal actions
autonomously, and transmits output actions instantaneously to its environment. In contrast, the
automaton's input is generated by the environment and transmitted instantaneously to the
automaton. The distinction between input and other actions is fundamental, based on who
determines when the action is performed: an automaton can establish restrictions on when it will
perform an output or internal action, but it is unable to block the performance of an input action.

2.1.1. Action Signatures
The formal description of an automaton's actions and their classification into inputs, outputs

and internal actions is given by its "action signature." An action signature S is an ordered triple
consisting of three pairwise-disjoint sets of actions. We write in(S), out(S) and int(S) for the
three components of S, and refer to the actions in the three sets as the input actions, output
actions and internal actions of S, respectively. We let ext(S) = in(S) U out(S) and refer to the
actions in ext(S) as the external actions of S. Also, we let local(S) = int(S) u out(S), and refer to
the actions in local(S) as the locally controlled actions of S. Finally, we let acts(S) = in(S) u
out(S) u int(S), and refer to the actions in acts(S) as the actions of S.

An external action signature is an action signature consisting entirely of external actions, that
is, having no internal actions. If S is an action signature, then the external action signature of S
is the action signature extsig(S) = (in(S),out(S),O), i.e., the action signature that is obtained from
S by removing the internal actions.

2.1.2. Input/Output Automata
An input/output automaton A (also called an I/0 automaton or simply an automaton) consists

of four components: 7

" an action signature sig(A),

" a set states(A) of states,

" a nonempty set start(A) c states(A) of start states, and

" a transition relation steps(A) g states(A) x acts(sig(A)) x states(A), with the
property that for every state s' and input action it there is a transition (s',r,s) in
steps(A).

Note that the set of states need not be finite. We refer to an element (s',r,s) of steps(A) as a
step of A. The step (s',ir,s) is called an input step of A if 7E is an input action, and output steps,
internal steps, external steps and locally controlled steps are defined analogously. If (s',lt,s) is a

71/0 automata, as defined in (14], also include a fifth component, which is used for describing fair exeoutions.
We omit it here as it is not needed for the results described in this paper.

6

step of A, then it is said to be enabled .n s'. Since every input action is enabled in every state,
automata are said to be input-enabled. The input-enabling property means that an automaton is
not able to block input actions. If A is an automaton, we sometimes write acts(A) as shorthand
for acts(sig(A)), and likewise for in(A), out(A), etc. An 110 automaton A is said to be closed if
all its actions are locally controlled, i.e., if in(A) = 0.

Note that an I/O automaton can be "nondeterministic," by which we mean two things: that
more than one locally controlled action can be enabled in the same state, and that the same
action, applied in the same state, can lead to different successor states. This nondeteiminism is
an important part of the model's descriptive power. Describing algorithms as
nondeterministically as possible tends to make results about the algorithms quite general, since
many results about nondeterministic algorithms apply a fortiori to all algorithms obtained by
restricting the nondeterministic choices. Moreover, the use of nondeterminism helps to avoid
cluttering algorithm descriptions and proofs with inessential details. Finally, the uncertainties
introduced by asynchrony make nondeterminism an intrinsic property of real concurrent systems,
and so an important property to capture in our formal model of such systems.

2.1.3. Executions, Schedules and Behaviors
When a system is modeled by an I/O automaton, each possible run of the system is modeled by

an "execution," an alternating sequence of states and actions. The possible activity of the
system is captured by the set of all possible executions that can be generated by the automaton.
However, not all the information contained in an execution is important to a user of the system,
nor to an environment in which the system is placed. We believe that what is important about
the activity of a system is the externally visible events, and not the states or internal events.

-,;. us on the a,,iomaton'. "bchaviors" - the subsequences of its executions
consisting of external (i.e., input and output) actions. We regard a system as suitable for a
purpose if any possible sequence of externally visible events has appropriate characteristics.
Thus, in the model, we formulate correctness conditions for an I/O automaton in terms of
properties of the automaton's behaviors.

Formally, an execution fragment of A is a finite sequence s0 itlsl'92 ... ;nSn or infinite sequence

s0T IS]it2..rnSn.., of alternating states and actions of A such that (SiXi+lSi+l) is a step of A for
every i for which i+1 exists. An execution fragment beginning with a start state is called an
execution. We denote the set of executions of A by execs(A), and the set of finite executions of
A by finexecs(A). A state is said to be reachable in A if it is the final state of a finite execution
of A.

The schedule of an execution fragment cx of A is the subsequence of a consisting of actions,
and is denoted by sched(ct). We say that 0 is a schedule of A if 3 is the schedule of an execution
of A. We denote the set of schedules of A by scheds(A) and the set of finite schedules of A by
finscheds(A). The behavior of a sequence 3 of actions in acts(A), denoted by beh(3), is the
subsequence of 3 consisting of actions in ext(A). The behavior of an execution fragment c of A,
denoted by beh(a), is defined to be beh(sched(a)). We say that 0 is a behavior of A if 3 is the
behavior of an execution of A. We denote the set of behaviors of A by behs(A) and the set of
finite behaviors of A byfinbehs(A).

We say that a finite schedule 03 of A can leave A in state s if there is some finite execution (X of
A with final state s and with sched(x) = 3. Similarly, a finite behavior 3 of A can leave A in

7

state s if there is some finite execution cc of A with final state s and with beh(oa) = 1. We say that
an action 7t is enabled after a finite schedule or behavior 3 of A if there is a state s such that 13
can leave A in state s and ir is enabled in s.

An extended step of an automaton A is a triple of the form (s',P,s), where s' and s are in
states(A), 3 is a finite sequence of actions in acts(A), and there is an execution fragment of A
having s' as its first state, s as its last state and 13 as its schedule.

If 13 is any sequence of actions and (D is a set of actions, we write 1310 to denote the
subsequence of 13 containing all occurrences of actions in (D. If A is an automaton, we write 31A
for P3lacts(A).

2.2. Composition
Often, a single system can also be viewed as a combination of several component systems

interacting with one another. To reflect this in our model, we define a "composition" operation
by which several 1/O automata can be combined to yield a single I/O automaton. Our
composition operator connects each output action of the component automata with the
identically named input actions of any number (usually one) of the other component automata.
In the resulting system, an output action is generated autonomously by one component and is
thought of as being instantaneously transmitted to all components having the same action as an
input. All such components are passive recipients of the input, and take steps simultaneously
with the output step.

2.2.1. Composition of Action Signatures
We first define composition of action signatures. Let I be an index set that is at most

countable. A collection {Si)ir=1 of action signatures is said to be strongly compatible8 if the
followxing properties hold:

1. out(Si) n' out(Sj) = 0 for all i, j E I such that i~j,

2. int(S i) n acts(Sj) = 0 for all i, j = I such that i~j, and

3. no action is in acts(S i) for infinitely many i.
Thus, no action is an output of more than one signature in the collection, and internal actions of
any signature do not appear in any other signature in the collection. Moreover, we do not permit
actions involving infinitely many component signatures.

The composition S = R-ieISi of a collection of strongly compatible action signatures (Sii I is
defined to be the action signature with

* in(S) = t-'i iin(Si) - uie iout(Si),

* out(S) = UiE iout(Si), and

* int(S) = .i lint(Si).
Thus, output actions are those that are outputs of any of the component signatures, and similarly

8A weaker notion called "compatibility" is defined in [14], consisting of the first two of the three given
properties only. For the purposes of this paper, only the stronger notion will be required.

8

for internal actions. Input actions are any actions that are inputs to any of the component
signatures, but outputs of no component signature.

2.2.2. Composition of Automata
A collection (Ai)iEI of automata is said to be strongly compatible if their action signatures are

strongly compatible. The composition A = Ili 1iAi of a strongly compatible collection of
automata { Ai)iE=I has the following components: 9

" sig(A) = -1ieI sig(Ai),

" states(A) = 'Iie I states(Ai),

" start(A) = Ilie I start(Ai), and

* steps(A) is the set of triples (s',it,s) such that for all i E I, (a) if t e acts(Ai) then
(s'[i],ir,s[i]) -E steps(Ai), and (b) if 7 e acts(A i) then s'[i] = s[i]. 10

Since the automata Ai are input-enabled, so is their composition, and hence their composition
is an automaton. Each step of the composition automaton involves all the automata that have a
particular action in their action signature performing that action concurrently, while the automata
that do not have that action in their signature do nothing. We will often refer to an automaton
formed by composition as a "system" of automata.

If cx = s0 tsI... is an execution of A, let alA i be the sequence obtained by deleting 7tjsj when tj
is not an action of Ai, and replacing the remaining s..by sj[i]. Recall that we have previously
defined a projection operator for action sequences. &he two projection operators are related in
the obvious way: sched(zlA i) = sched(a)lA i, and similarly beh(oalA i) = beh((x)lA i .

In the course of our discussions we will often reason about automata without specifying their
internal actions. To avoid tedious arguments about compatibility, henceforth we assume that
unspecified internal actions of any automaton are unique to that automaton, and do not occur as
internal or external actions of any of the other automata we discuss.

All of the systems that we will use for modeling transactions are closed systems, that is, each
action is an output of some component. Also, each output of a component will be an input of at
most one other component.

2.2.3. Properties of Systems of Automata
Here we give basic results relating executions, schedules and behaviors of a system of

automata to those of the automata being composed. The first result says that the projections of
executions of a system onto the components are executions of the components, and similarly for
schedules, etc.

Proposition 1: Let (Ai}ie1i be a strongly compatible collection of automata, and let

9 Note that the second and third components listed are just ordinary Cartesian products, while the first component

uses the previous definition of composition of action signatures.

We use the notation sti] to denote the 1h component of the state vector s.

9

A = -~~ie1Ai. If a E execs(A) then calAi E execs(Ai) for all i E I. Moreover, the same
result holds for finexecs, scheds, finscheds, behs and finbehs in place of execs.

Converses can also be proved for all the parts of the preceding proposition. The following are
most useful. They say that schedules and behaviors of component automata can be "patched
together" to form schedules and behaviors of the composition.

Proposition 2: Let {Ai}i I be a strongly compatible collection of automata, and let
A = -iiAi .

1. Let 13 be a sequence of actions in acts(A). If f3IA i - scheds(Ai) for all i E I,
then 13 E scheds(A).

2. Let 13 be a finite sequence of actions in acts(A). If 131Ai E finscheds(A i) for all

i E I, then 13 r finscheds(A).

3. Let 13 be a sequence of actions in ext(A). If 131Ai E behs(A i) for all i E I, then
13 E behs(A).

4. Let 13 be a finite sequence of actions in ext(A). If P3lA i e finbehs(A i) for all i

r=I, then 13 E finbehs(A).

The preceding proposition is useful in proving that a sequence of actions is a behavior of a
system A: it suffices to show that the sequence's projections are behaviors of the components of
A and then to appeal to Proposition 2.

2.3. Implementation
We define a notion of "implementation" of one automaton by another. Let A and B be

automata with the same external action signature, i.e., with extsig(A) = extsig(B). Then A is said
to implement B if finbehs(A) c finbehs(B). One way in which this notion can be used is the
following. Suppose we can show that an automaton B is "correct," in the sense that its finite
behaviors all satisfy some specified property. Then if another automaton A implements B, A is
also correct. One can also show that if A implements B, then replacing B by A in any system
yields a new system in which all finite behaviors are behaviors of the original system.

One useful technique for showing that one automaton implements another is to give a
correspondence between states of the two automata. Such a correspondence can often be
expressed in the form of a kind of abstraction mapping that we call a "possibilities mapping,"
defined as follows. Suppose A and B are automata with the same external action signature, and
suppose f is a mapping from states(A) to the power set of states(B). That is, if s is a state of A,
f(s) is a set of states of B. The mapping f is 3aid to be a possibilities mapping from A to B if the
following conditions hold:

1. For every start state so of A, there is a start state to of B such that to E f(s0).

2. Let s' be a reachable state of A, t' e f(s') a reachable state of B, and (s',r,s) a step
of A. Then there is an extended step (t',y,t) of B (possibly having an empty
schedule) such that the following conditions are satisfied:

a. ylext(B) = ntlext(A), and

b. t E f(s).

10

The following proposition shows that giving a possibilities mapping from A to B is sufficient
to show that A implements B.

Proposition 3: Suppose that A and B are automata with the same external action
signature and there is a possibilities mapping, f, from A to B. Then A implements B.

2.4. Preserving Properties
Although automata in our model are unable to block input actions, it is often convenient to

restrict attention to those behaviors in which the environment provides inputs in a "sensible"
way, that is, where the environment obeys certain "well-formedness" restrictions. A useful way
of discussing such restrictions is in terms of the notion that an automaton "preserves" a property
of behaviors: as long as the environment does not violate the property, neither does the
automaton. Such a notion is primarily interesting for safety properties. Let (D be a set of actions
and P a safety property for sequences of actions in (D. Let A be an automaton with (D r) int(A) =
0. We say that A preserves P if 3it*c e P whenever PI' E P, it r out(A) and P3nIA E
finbehs(A).

Thus, if an automaton preserves a property P, the automaton is not the first to violate P: as
long as the environment only provides inputs such that the cumulative behavior satisfies P, the
automaton will only perform outputs such that the cumulative behavior satisfies P. In many
cases of interest, we will have (D ext(A); note that even in this case, the fact that an automaton
A preserves P does not imply that all of A's behaviors, when restricted to (D, satisfy P. It is
possible for a behavior of A to fail to satisfy P, if an input causes a violation of P. However, the
following proposition gives a way to deduce that all of a system's behaviors satisfy P. The
proposition says that, under certain conditions, if all components of a system preserve P, then all
the behaviors of the composition satisfy P.

Proposition 4: Let {Ai)ij I be a strongly compatible collection of automata and let A
=rl-iIAi. Let (D be a set of actions such that (D n int(A) = 0, and let P be a safety
property for actions in (D. Suppose that for each i e I, Ai preserves P. Then A
preserves P. Furthermore, if (I n in(A) = 0, then behs(A)!(! ; P. That is, if 0 E
behs(A), then 314I) E P.

Proof: Let 3 be a sequence of actions such that P10 e P, t e out(A) and P3nIA e
finbehs(A). Then t • out(Ai) ".r some i e I, and P3nA ir e finbehs(Ai), by Proposition
2. Since Ai preserves P, On* E P.

Now suppose that) r in(A) = 0, and let P c behs(A). Since A preserves P, by a
simple induction, every finite prefix of 310 is in P. Then P31 e P, by the limit-closure
of P. 0

3. Basic Systems
In this section, we define "basic systems," the class of transaction-processing systems to

which our results apply. Basic systems generalize both the generic systems of (41 and the
pseudotime systems of [2]. We also define correctness conditions for basic systems, in
particular, the notion of correc- nanagement of orphans.

11
3.1. Overview

Transaction-processing systems consist of user-provided nansaction code, plus transaction-
processing algorithms designed to coordinate the activities of different transactions. The
transactions are written by application programmers in a suitable programming language.
Transactions are permitted to invoke operations on data objects. In addition, if nesting is
allowed, transactions can invoke subtransactions and receive responses from the subtransactions
describing the results of their processing.

Li a transaction-processing system, the transaction-processing algorithms interact with the
transactions, making decisions about when to schedule subtransactions and operations on data
objects. The transaction-processing algorithms include concurrency control and recovery
algorithms. In many interesting cases (e.g., for locking algorithms), the transaction-processing
algorithms can be naturally divided into a "controller" and a collection of "objects," w',ere
each object includes concurrency control and recovery algorithms appropriate for that object and
the controller manages communication among the transactions and objects. We do not, however,
require this division for our general results.

The transaction-processing systems studied in this paper are called "basic systems." In the
organization we consider, the transaction-processing algorithms are represented by a component
called a "basic database." Each component of a basic system is modeled as an 110 automaton.
That is, each transaction is an automaton, and the basic database is another automaton.

The nested structure of transactions is modeled by describing each transaction and
subtransaction in the transaction nesting structure as a separate I/O automaton. If a parent
transaction T wishes to invoke a child transaction T', T issues an output action that "requests
that T' be created." The basic database receives this request, and at some later time migt issue
an action that is an input to the child T' and corresponds to the "creation" of T'. TI s, the
different transactions in the nesting structure comprise a forest of automata, communicatir, • with
each other indirectly through the basic database. The highest-level transactions, i.e., thos that
are not subtransactions of any other transactions, are the roots in this forest.

It is actually more convenient to model the transaction nesting structure as a tree rather thar, as
a forest. Therefore, we add an extra "root" automaton as a "dummy transaction," located at
the top of the transaction nesting structure. The highest-level user-defined transactions are
considered to be children of this new root. The root can be thought of as modeling the outside
world, from which invocations of top-level transactions originate and to which reports about the
results of such transactions are sent.

In the rest of this section, we define "basic systems" and state the correctness conditions that
they are supposed to satisfy.

3.2. System Types
We begin by defining a type structure that will be used to name the transactions and objects in

a basic system.

A system type consists of the following:

* a set 7'of transaction names,

12

" a distinguished transaction name To E T,

" a subset accesses of Tnot containing T0 ,

" a mapping parent: T- (T0 } -- T, which configures the set of transaction names into
a tree, with To as the root and the accesses as the leaves,

" a set ,'of object names,

" a mapping object: accesses --* , and

" a set V of return values.

Each element of the set "accesses" is called an access transaction name, or simply an access.
Also, if object(T) = X we say that T is an access to X.

In referring to the transaction tree, we use standard tree terminology, such as "leaf node,"
"internal node," "child," "ancestor," and "descendant." As a special case, we consider any
node to be its own ancestor and its own descendant, i.e., the "ancestor" and "descendant"
relations are reflexive. We also use the notion of a "least common ancestor" of two nodes.

The transaction tree describes the nesting structure for transaction names, with To as the name
of the dummy "root transaction." Each child node in this tree represents the name of a
subtransaction of the transaction named by its parent. The chiliren of T0 represent names of the
top-level user-defined transactions. The accesses represent names for the lowest-level
transactions in the transaction nesting structure; we will use these lowest-level transaction names
to model operations on data objects. Thus, the only transactions that actually access data are the
leaves of the transaction tree and these do nothing else. The internal nodes model transactions
whose function is to create and manage subtransactions including accesses, but they do not
access data directly.

The tree structure should be thought of as a predefined naming scheme for all possible
transactions that might ever be invoked. In any particular execution, however, only some of
these transactions will actually take steps. We imagine that the tree structure is known in
advance by all components of a system. The tree will, in general, be an infinite structure with
infinite branching.

The set Xis the set of names for the objects used in the system. Each access transaction name
is assumed to be an access to some particular object, as designated by the "object" mapping.
The set V of return values is the set of possible values that might be returned by successfully
completed transactions to their parent transactions.

For the rest of this paper, we will fix a particular system type.

3.3. General Structure of Basic Systems
A basic system for a given system type is a closed system consisting of a "transaction

automaton" AT for each non-access transaction name T and a single "basic database
automaton" B. Later in this section, we will give conditions to be satisfied by the transaction
and basic database automata. Here, we just describe the signatures of these automata, in order to
explain how the automata are interconnected.

13

Figure 1 depicts the structure of a basic system.

____Basic

Database

Figure 1: Basic System

The transaction nesting structure is indicated in part by dotted lines between transaction
automata corresponding to parent and child. Access transactions do not have associated
automata, and so the diagram does not indicate the parents of accesses. The direct connections
between automata (via shared actions) are indicated by solid lines. Thus, the transaction
automata interact directly with the basic database, but not directly with each other.

CREATE(T) REQUESTCOMMIT(T,v)

T

REQUESTCREATE(T') REPORTCOMMIT(T,v)

REPORTABORT(T')

Figure 2: Transaction Interface

Figure 2 shows the interface of a transaction automaton in more detail. The automaton for
transaction name T has an input action CREATE(T), which is generated by the basic database in
order to initiate T's processing. We do not include explicit arguments to a transaction in our
model; rather we suppose that there is a different transaction for each possible set of arguments,

14

and so any input to the transaction is encoded in the name of the transaction. T has
REQUESTCREATE(T') actions for each child T' of T in the transaction nesting structure;
these are requests for creation of child transactions, and are communicated directly to the basic
database. At some later time, the basic database might respond to a REQUEST CREATE(T')
action by issuing a CREATE(T') action; in case T' is not an access, this action is an input to the
automaton for transaction T'. T also has REPORTCOMMIT(T',v) and REPORTABORT(T')
input actions, by which the basic database informs T about the fate (commit or abort) of its
previously requested child T'. In the case of a commit, the report includes a return value v that
provides information about the activity of T'; in the case of an abort, no information is returned.
Finally, T has a REQUEST_- COMMIT(T,v) output action, by which it announces to the basic
database that it has completed its activity successfully, with a particula ret -lt that is described
by return value v.

REQUESTCREATE CREATE

REQUESTCOMMIT REQUEST-COMMIT (accesses)
Basic

Database COMMIT

ABORT

REPORTCOMMIT

REPORTABORT

Figure 3: Basic Database Interface

Figure 3 shows the basic database interface. The basic database in any particular basic system
receives the previously mentioned REQUESTCREATE and REQUESTCOMMIT actions as
inputs from the transaction automata. It produces CREATE actions as outputs, thereby
awakening transaction automata or invoking operations on objects. The basic database also
produces REQUESTCOMMIT(T,v) output actions for accesses T; these represent responses to
the invocations of operations on objects. The value v in a REQUESTCOMMIT(T,v) action is a
return value returned by the operation as part of its response. The basic database also produces
COMMIT(T) and ABORT(T) actions for arbitrary transaction names T # T0 , representing
decisions about whether the designated transaction commits or aborts. For technical
convenience, we classify the COMMIT and ABORT actions and the REQUESTCOMMIT and
CREATE actions for access transactions as output actions of the basic database, even when they
are not inputs to any other system component. 11 The basic database also has
REPORTCOMMIT and REPORTABORT actions as outputs, by which it communicates the
fates of transactions to their parents.

Different basic databases may include additional output actions. The final section of this paper

"Classifying actions as outputs even though they are not inputs to any other system component is permissible in
the I/O automaton model. In this case, it would also be possible to classify these actions as internal actions of the
basic database, but then the statements and proofs of the ensuing results would be more complicated.

15

describes "generic databases," which have additional outputs by which the fates of transactions
are communicated to the objects, so that locks may be released. "Pseudotime databases" are a
second example, which contain additional outputs involving the management of timestamp data.

As is always the case for 11O automata, the components of a system are determined statically.
Even though we referred earlier to the action of "creating" a child transaction, the model treats
the child transaction as if it had been there all along. The CREATE action is treated formally as
an input action to the child transaction; the child transaction will be constrained not to perform
any output actions until such a CREATE action occurs. A consequence of this method of
modeling dynamic creation of transactions is that the system must include automata for all
possible transactions that might ever be created in any execution. In most interesting cases, this
means that the system will include infinitely many transaction automata.

In our work, it is convenient to use two separate actions, REQUESTCREATE and CREATE,
to describe what happens when a subtransaction is activated. This separation occurs in actual
distributed systems such as Argus, and is important in our results and proofs. Similar remarks
hold for the distinction among REQUESTCOMMIT, COMMIT and REPORTCOMMIT
actions.

3.4. Serial Actions
The external actions of a basic system of a given system type include the serial actions for that

type. The serial actions for a given system type are defined to be the actions listed in the
preceding subsection: CREATE(T) and REQUEST_COMMIT(T,v), where T is any transaction
name and v is a return value, and REQUESTCREATE(T), COMMIT(T), ABORT(T),
REPORTCOMMIT(T,v), and REPORTABORT(T), where T * To is a transaction name and v
is a return value. 12 If 03 is a sequence of actions, define serial(p3) to be the subsequence of 1
containing all the serial actions in 3.

In this subsection, we define some simple concepts involving serial actions. All the definitions
in this subsection are based on the set of actions only, and not on the specific automata in any
particular system. For this reason, we present these definitions here, before going on (in the next
subsection) to give more information about the basic system components.

We first present some fundamental definitions, and then we define notions of "well-
formedness" for sequences of actions.

3.4.1. Terminology
The COMMIT(T) and ABORT(T) actions are called completion actions for T, while the

REPORTCOMMIT(Tv) and REPORTABORT(T) actions are called report actions for T.

We associate transaction names with some of the serial actions, as follows. Let T be a
transaction name. If t is cither a CREATE(T) or a REQUESTCOMMIT(T,v) action, or is a
REQUESTCREATE(T'), REPORT_COMMIT(T',v') or REPORTABORT(T'), where T' is a

12These actions are called "serial actions" because they are exactly the external actions of a "serial system" of
the given type. More will be said about serial systems later in the paper.

16

child of T, then we define transaction(n) to be T. If it is a completion action, then transaction(t)
is undefined. In some contexts, we will also need to associate a transaction with completion
actions; since a completion action for T can be thought of as occurring in between T and
parent(T), some of the time we will want to associate T with the action, and at other times we
will want to associate parent(T) with it. Thus, we extend the "transaction(7t)" definition in two
different ways. If it is any serial action, then we define hightransaction(nr) to be transaction(nr) if
r is not a completion action, and to be parent(T), if it is a completion action for T. Also, if -t is
any serial action, we define lowtransaction(7t) to be transaction(irt) if t is not a completion
action, and to be T, if t is a completion action for T. In particular, hightransaction(rt) =

lowtransaction(ir) = transaction(7t) for all serial actions t for which transaction(r) is defined.

We also require notation for the object associated with any serial action whose t-ansaction is
an access. If 7t is a serial action of the form CREATE(T) or REQUESTCOMMIT(T,v), where
T is an access to X, then we define object(nt) to be X.

We extend the preceding notation to events as well as actions. For example, if it is an event,
then we write transaction(nt) to denote the transaction of the action of which t is an occurrence.
We extend the definitions of "hightransaction," "lowtransaction," and "object" similarly. We
will extend other notation in this paper in the same way, without further explanation.

Now we require terminology to describe the status of a transaction during execution. Let P be
a sequence of actions. A transaction name T is said to be active in 13 provided that 13 contains a
CREATE(T) event but no REQUESTCOMMIT event for T. Similarly, T is said to be live in j3
provided that 3 contains a CREATE(T) event but no completion event for T. (However, note
that 13 may contain a REQUESTCOMMIT for T.) Also, T is said to be an orphan in 13 if there is
an A BORT(U) action in 13 for some ancestor U of T.

We have already used projection operators to restrict action sequences to particular sets of
actions, and to actions of particular automata. We now introduce another projection operator,
this time to sets of transaction names. Namely, if 13 is a sequence of actions and Uis a set of
transaction names, then 131/is defined to be the sequence 131I{: transaction(nt) e 6/. If T is a
transaction name, we sometimes write 1IT as shorthand for 31(T). Similarly, if 13 is a sequence
of actions and X is an object name, we sometimes write 131X to denote I (it: ohject(ir) = Xl.

3.4.2. Well-Formedness
We will place very few constraints on the transaction automata and basic database automaton

in our definition of a basic system. However, we will want to assume that certain simple
properties are guaranteed; for example, a transaction should not take steps until it has been
created, and the basic database should not create a transaction that has not been requested. Such
requirements are captured by well-formedness conditions, which are fundamental safety
properties of sequences of external actions of the transaction and basic database automata. We
define those conditions here.

First, we define "transaction well-formedness." Let T be any transaction name. A sequence
13 of serial actions 7t with transaction(nt) = T is defined to be transaction well-formed for T
provided the following conditions hold.

1. The first event in 13, if any, is a CREATE(T) event, and there are no other
CREATE events.

17

2. There is at most one REQUESTCREATE(T') event in 13 for each child T' of T.

3. Any report event for a child T' of T is preceded by REQUESTCREATE(T') in 13.
4. There is at most one report event in [3 for each child T' of T.

5. If a REQUESTCOMMIT event for T occurs in 13, then it is preceded by a report
event for each child V of T for which there is a REQUESTCREATE(T') in 13.

6. If a REQUESTCOMMIT event for T occurs in 03, then it is the last event in 3.

In particular, if T is an access, then the only sequences that are transaction well-formed for T
are the prefixes of the two-event sequences of the form CREATE(T)REQUESTCOMMII (T,v).
For any T, it is easy to see that the set of transaction well-formed sequences for T is a safety
property, i.e., that it is prefix-closed and limit-closed.

Next, we define "basic database well-formedness." A sequence 13 of serial actions is defined
to be basic database well-formed provided the following conditions hold.

1. The sequence [PIT is transaction well-formed, for all transaction names T.

2. If a CREATE(T) event occurs in P3, for T T0 , then there is a preceding
REQUESTCREATE(T) in 13.

3. If there is a COMMIT(T) event in f3, then there is a preceding
REQUESTCOMMIT(T,v) event in 13, for some v.

4. If there is an ABORT(T) event in P3, then there is a preceding
REQUESTCREATE(T) event in 13.

5. There is at most one completion event in 13 for each transaction name T.

6. If there is a REPORTCOMMIT(T,v) event in 13, then there is a preceding
REQUESTCOMMIT(T,v) event in P3 and a preceding COMMIT(T) event in 13.

7. If there is a REPORTABORT(T) event in 13, then there is a preceding ABORT(T)
event in 13.

8. There is at most one report event in 13 for each transaction name T.

3.5. Basic Systems
We are now ready to define "basic systems." Basic systems are composed of transaction

automata, one for each non-access transaction name, and a single basic database automaton. We
describe the two kinds of components in turn.

3.5.1. Transaction Automata
A transaction automaton AT for a non-access transaction name T (of the givcn system type) is

an 1/0 automaton with the following external action signature.

18

Input:
CREATE(T)
REPORTCOMMIT(T',v), for every child T' of T, and return value v
REPORT_ABORT(T'), for every child T' of T

Output:
REQUESTCREATE(T'), for every child T' of T
REQUESTCOMMIT(T,v), for every return value v

In addition, AT may have an arbitrary set of internal actions. We require AT to preserve
transaction well-formedness for T, as defined in the preceding subsection. As discussed earlier,
this does not mean that all behaviors of AT are transaction well-formed, but it does mean that as
long as the environment of AT does not violate transaction well-formedness, AT will not do so.
Except for that requirement, transaction automata can be chosen arbitrarily. Note that if 03 is a
sequence of actions, then 13IT = P3ext(AT).

Transaction automata are intended to be general enough to model the transactions defined in
any as~nable programming language. Particular programming languages may impose
additional restrictions on transaction behavior. (For example, Argus suspends activity in
transactions until subtransactions complete.) However, our results do not require such
restrictions.

3.5.2. Basic Database Automata
A basic database automaton is also modeled as an 1/0 automaton. A basic database passes

requests for the creation of subtransactions to the appropriate recipient, initiates
REQUESTCOMMIT actions for accesses, makes decisions about the commit or abort of
transactions, and passes reports about the completion of children back to their parents. It may
also carry out other activity.

A basic database has the following actions in its external action signature.

Input:
REQUESTCREATE(T), T * To
REQUESTCOMMIT(T,v), T a non-access transaction name

Output:
CREATE(T)
REQUESTCOMMIT(T,v), T an access transaction name
COMMIT(T), T * To

ABORT(T), T * To

REPORTCOMMIT(T,v), T * To

REPORTABORT(T), T * To

In addition, it may have other arbitrary output actions, as well as arbitrary internal actions.
Depending upon the design of the particular basic database automaton, some of the additional
output actions may be associated with particular objects. Hence, each basic database is assumed
to come equipped with an extension of the object partial mapping on actions, which may
associate some of these additional, non-serial output actions with particular object names. That
is, each non-serial output action it may (but need not) have object(t) defined.

19

The REQUEST-CREATE and REQUESTCOMMIT inputs are intended to be identified with
the corresponding outputs of transaction automata, and conversely, all the CREATE and report
outputs (except those CREATE(T) actions for which T is an access) are identified with the
corresponding inputs of transaction automata. A basic database is required to preserve basic
database well-formedness.

There are many examples of basic databases in the literature. For example, the composition of
the generic controller and generic objects of [4] preserves basic database well-formedness, and
so is an example of a basic database. The same is true for the composition of the pseudotime
controller and pseudotime objects of [2]. We will present these examples in more detail later in
this paper. In fact, we claim that almost all interesting transaction-processing algorithms can be
modeled as basic databases. (See [131 for additional examples.)

Our notion of basic database identifies the aspects of transaction-processing algorithms that are
relevant to our analysis of orphan management algorithms. It turns out that the details of how
synchronization and recovery are implemented by a basic database are largely irrelevant.
Indeed, this is one of the important contributions of this paper: we are able to state correctness
conditions for and verify orphan management algorithms in a way that is independent of the
concurrency control and recovery methods used within the basic database.

3.5.3. Basic Systems
A basic system B is the composition of a strongly compatible set of automata indexed by the

union of the set of non-access transaction names and the singleton set {BD} (for "basic
database"). Associated with each non-access transaction name T is a transaction automaton AT
for T. Associated with the name BD is a basic database automaton for the system type.

When the particular basic system B is understood from the context, we call its external actions
the basic actions, and its executions, schedules and behaviors the basic executions, basic
schedules and basic behaviors, respectively. The following proposition says that basic behaviors
have the appropriate well-formedness properties.

Proposition 5: If 03 is a basic behavior, then the following conditions hold.
1. For every transaction name T, P3IT is transaction well-formed for T.

2. The sequence serial(3) is basic database well-formt.

Proof: Note first that the basic database preserves basic database well-formedness,
and this immediately implies that it preserves transaction well-formedness for every
transaction name. Next, note that each transaction automaton preserves transaction
well-formedness for the appropriate transaction name. Furthermore, it has in its
signature no actions of other transactions, and so preserves transaction well-
formedness for all transaction names. The first part of the proposition follows by
Proposition 4.

A simple induction shows that each transaction automaton also preserves basic
database well-formedness, and the second conclusion follows also from Proposition 4.
0

20

3.6. Serial Correctness
In this subsection, we give appropriate notions of correctness for basic systems. These include

notions appropriate for systems that manage orphans, as well as notions for systems that do not
manage orphans but do carry out concurrency control and recovery. These notions are taken
from [11, 12, 4]. The spirit of our definitions is similar to that of the usual definition of
"serializability" in the database literature. However, the usual notion does not take nesting or
aborts into account.

We define correctness conditions for basic systems of a given type by relating their behaviors
to those of a particular basic system of that type, the "serial system." The executions, schedules
and behaviors of a serial system are called "serial executi3ns," "serial schedules" and "serial
behaviors," respectively. Serial systems are composed of nansaction automata and a "serial
database," which itself is the composition of a "serial scheduler" and objects. The transaction
automata are identical to those in basic systems. The serial scheduler controls the order in which
the transactions take steps and in which accesses to objects occur. It permits only one child of a
transaction to run at a time. Thus, sibling transactions execute sequentially at every parent node
in the transaction tree, so that transactions are run in a depth-first traversal of the tree. Also, the
serial scheduler aborts a transaction only if it has not been created, and creates a transaction only
if it has not been aborted. Thus, in a serial execution, sibling transactions e.ecute sequentially
and aborted transaction take no steps.

Objects in a serial system are quite simple. Since the serial scheduler guarantees that siblings
execute sequentially, and that aborted transactions never take any steps, serial objects do not
have to deal with concurrency or with failures. The serial objects serve as a specification of how
objects should behave in the absence of concurrency and failures. (The serial objects serve the
same purpose as the "serial specifications" in [25, 26].) A detailed description of serial systems
may be found in the references [11, 12, 4, 13].

Now we give a definition that says that a sequence of actions "looks like" a serial behavior to
a particular transaction. Namely, if 13 is a sequence of actions and T is a transaction name, we
say that 13 is serially correct for T if there exists a serial behavior y such that YT = 13T. In other
words, T sees the same thing in 13 that it could see in some serial behavior.

Now we can define two notions of correctness for basic systems. First, we say that a basic
system is serially correct if each of its finite 13 behaviors is serially correct for all transaction
names. 14 The requirement that every transaction see a serial view is very strong. Without
orphan management, in fact, systems may not meet this requirement. (This is true of all
published concurrency control algorithms for nested transactions of which we are aware.)
Instead, they provide a slightly weaker notion of correctness, namely that non-orphan
transactions see serial views. More precisely, we say that a basic system is serially correct for
non-orphans if each of its finite behaviors 13 is serially correct for all transaction names that are

13Serial correctness is stated in terms of finite behaviors because the corresponding property for infinite behaviors
is not satisfied by locking algorithms, in the absence of extra assumptions [22].

14As discussed in (Il], this definition of correctness allows different transactions in 03 to "see" different serial
behaviors. However, correctries applies to the root transaction To as well, so the root must see the same results
from the top-level transactions that it could see in some serial behavior.

21

not orphans in 03. Orphans, however, can see arbitrary views.

The papers [11, 12, 4, 2] contain examples of basic systems that are serially correct for non-
orphans. The basic system in [11, 12] uses exclusive locking for concurrency control and
recovery, 15 while the systems in [4] use a more general commutativity-based locking strategy.
The systems in [2] use timestamps for concurrency control and recovery.

The orphan management algorithms of this paper ensure that the systems that use them are
serially correct. To ensure this, the orphan management algorithms rely on the basic database to
ensure serial correctness for non-orphans; in fact, the algorithms work with any basic database
that ensures serial correctness for non-orphans. In this sense, the orphan management algorithms
and the concurrency control algorithms are independent. We prove a result of the following sort
for each orphan management algorithm: if 3 is a behavior of the system with orphan
management and T is a transaction name, then there exists a behavior 7 of the underlying basic
system such that YT = 3IT and T is not an orphan in y. In other words, the orphan management
algorithms prevent transactions from "knowing" that they are orphans - everything a
transaction sees is consistent with what it could see in the underlying basic system, in some
execution in which it is not an orphan. These results imply that if the basic system is serially
correct for non-orphans, then the corresponding system with orphan management is serially
correct.

4. Information Flow
In this section, we define families of irreflexive partial orders, each of which models the

information flow between events in behaviors of a basic system. These partial orders are used
explicitly by the orphan management algorithms described later, in order to ensure that no
transaction T ever obtains knowledge of the abort of any of its ancestors. If this is the case, then
there will always be a "possible world" in which T is not an orphan and the interaction with T
and its environment is unchanged.

4.1. Families of Affects Relations
If [3 is a sequence of basic actions, R is a binary relation on events in 3, and y is a subsequence

of 13, then we say that 7 is R-closed in 03 if, whenever y contains an event nt in 13, it also contains
any event 6 such that (0,nt) r 3.

Let B be a basic system, and let R = {R8) be a family of relations, one for each sequence 3 of
external actions of B. Then R is said to ge a family of affects relations for B provided that the
following conditions hold.

1. Each R5 is an irreflexive partial order on the events in 3 such that if (0,r) E R5
then 0 precedes 7c in 3.

2. If y is a prefix of 3, and 0 and t are in y, then (0,7t) E Rp if and only if (0,t) e Ry

3. If 03 is a behavior of B and y is an Rp-closed subsequence of 13, then y is a behavior

15There are some minor differences; for example, the completion and report actions are combined into single
actions rather than treated as two separate actions.

22

of B.

4. Suppose that 13 is a behavior of B and (Oit) E R where 0 is an ABORT(T') event,
and t is a CREATE, a COMMIT, an ABORT, a REPORTCOMMIT, a
REPORTABORT(T) for T T', an output of a non-access transaction, or a
REQUEST-COMMIT for an access. Then there is an event V between 0 and i in
13 such that (0,4) e Rp, where 4W is related to t as follows:

a. If it = CREATE(T) then ' = REQUEST_CREATE(T).

b. If n = COMMIT(T) then W = REQUESTCOMMIT(T,v).

c. If t = REPORTCOMMIT(T,v) then W = COMMIT(T).

d. If t = REPORTABORT(T) then V = ABORT(T).

e. If nt = ABORT(T) then V = REQUEST_CREATE(T).

f. If t is an output of non-access transaction T, then 4f is an event of
transaction T.

g. If t = REQUESTCOMMIT(T,v) where T is an access to object X, then
object(xV) = X.16

The first two conditions are quite simple: the first says that each relation Rp describes a partial
ordering consistent with the order in which events appear in 13, and the second says that whether
or not one event affects another is determined at the time the second event occurs. The third
conditon describes a sense in which the relation Ro captures all the dependency relationships
between events. The condition implies that if t is not affected by 0 in some behavior 3, then n
cannot "know" that 0 occurred, since t could also have occurred in a different behavior in
which 0 did not occur. The fourth condition is a technical condition that describes certain
limitations on the pattern of information flow. It will be needed for our later proofs, and can be
demonstrated for the examples in Section 9.

When the particular family R = {Rp} of affects relations is understood, we will often refer to
each R as an "affects relation," and we will often say "0 affects 7t in 13" to mean that (0,t) E
Ro.

4.2. Families of Directly-Affects Relations
In many cases of interest, a family of "iffects relations can be conveniently described by a

generating family of smaller relations. Thus, let B be a basic system and R' = {R'1} be a family
of relations, one for each sequence 13 of external actions of B. Then R' is said to be a family of
directly-affects relations for B provided that there is a family R = {Rp) of affects relations for B
such that for each 13, Rp is the transitive closure of R'3. In this case, we say that R' generates R.

When the particular family R' = (R'p } of directly-affects relations is understood, we will often
refer to each R'p as a "directly-affects relation"; also, we will often say that "0 directly affects
it in 13" to mean that (0,7t) E R'p.

16 Note that Wi can be either a serial or a non-serial event.

23

4.3. Using Families of Affects Relations to Describe Orphan Management
Algorithms

The intuitive idea behind the orphan management algorithms is that they ensure that an event
of a transaction T is never affected by the abort of an ancestor. Then we can show that every
transaction gets a view it could get in a behavior in which it is not an orphan: we simply take the
subsequence of the original behavior containing all events of T and all events that affect them in
that behavior. The resulting sequence is a basic behavior, by the definition of a family of affects
relations, and does not contain an abort for an ancestor of T, by construction.

The following example illustrates how an orphan can see an inconsistent state in a system
without orphan management. Suppose that T is a transaction with children T1 and T2 , both of
which are accesses to an object X. Consider the following scenario: T first accesses X through
its child T 1 . T then requests the creation of T2, which will access X again. Furthermore, assume
that T2 is requested only if T1 completes successfully, and that T1 modifies X. Now suppose that
T aborts before T 2 starts running at X, and X learns of the abort. If Tl's modification of X is
undone when X learns that T aborted, then T 2 will not see the value for X that it expects, since
T 2 only runs if T1 has modified X successfully. This scenario is captured more precisely by the
following fragment of a schedule of a generic system (generic systems are described in more
detail in Section 9.1):

CREATE(T)
REQUESTCREATE(T1)
CREATE(T 1)
REQUESTCOMMIT(T 1 ,v l)

COMMIT(T1)
REPORTCOMMIT(TI,v 1)
REQUESTCREATE(T 2)
ABORT(T)
INFORMABORTAT(X)OF(T)
CREATE(T 2)
REQUESTCOMMIT(T 2,v2)

(The INFORM_ABORT event lets X know that T has aborted.) The family of affects relations
for generic systems described in Section 9.1 ensures that the ABORT(T) event affects thL
INFORM_ABORTAT(X)OF(T) event, and that an event at an object is affected by all prior
events at the object. Thus, by preventing T 2 from running when its events would be affected by
the abort of an ancestor, we can prevent it from knowing that it is an orphan.

5. Filtered Systems
The two orphan management algorithms analyzed in this paper use quite different techniques.

However, each can be proved correct by showing that it implements the same abstract algorithm,
described in this section.

For Sections 5 through 8 of this paper, we fix a particular but arbitrary basic system B,
together with a family R of affects relations for B and a family R' of directly-affects relations for
B, where R' generates R. We describe several algorithms that exploit the properties of the
affects relations to manage orphans. In Section 9, we illustrate this general development by

24

describing two specific basic systems and their affects relations.

One way of ensuring that actions of a transaction T are never affected by the abort of an
ancestor of T is to add preconditions to all the actions of the basic database to permit actions of T
to occur only if they would not be affected in this way. It turns out, however, that this approach
checks for orphans much more frequently than necessary. In this section we define another kind
of system, called a "filtered system," that checks for orphans only when REQUESTCOMMIT
actions occur for access transactions. We then show that this is sufficient to ensure that
transactions are never affected by the aborts of ancestors.

We construct a filtered system based on the given basic system B and the given family R of
affects relations. The filtered system consists of the given transaction automata from B and a
"filtered database automaton." The filtered database automaton is obtained by slightly
modifying the basic database automaton; it "filters" REQUEST_COMMIT actions of access
transactions so that any transaction, orphan or not, sees a view it could see as a non-orphan in the
basic system.

5.1. The Filtered Database
The filtered database is obtained via a simple transformation from the basic database. The

only difference between the behaviors of the two databases is that the new database only allows
a REQUEST-COMMIT of an access to occur if it is not affected by the abort of an ancestor.

The filtered database has the same signature as the basic database. The state of the filtered
database has two components, basicstate and history, where basicstate is a state of the basic
database and history is a sequence of basic actions. Initial states of the filtered database are
those with basic-state equal to an initial state of the basic database and history equal to the
empty sequence.

A triple (s',rcs) is a step of the filtered database if and only if the following conditions hold.
1. (s'.basicstate,it,s.basicstate) is a step of the basic database.

2. s.history = s'.historyit if irt is a basic action. 17

3. s.history = s'.history if it is not a basic action.

4. If - = REQUESTCOMMIT(T,v) where T is an access to object X, and if T' is an
ancestor of T, then no ABORT(T') event affects an event Wr with object(VI) = X in
,'.history.

Thus, at the point where the REQUEST-COMMIT of an access is about to occur, an explicit
test is performed to verify that no preceding event at the same object is affected by Lhe abort of
any ancestor of the access.

Lemma 6: Let 03 be a finite schedule of the filtered database that can leave the
filtered database in state s. Then s.history = beh(p3).

17Recall that internal actions of the basic database are not classified as basic actions.

25

5.2. The Filtered System
The filtered system is the composition of the transaction automata and the filtered database

automaton. We cali its executions, schedules and behaviors the filtered executions, filtered
schedules and filtered behaviors, respectively.

Lemma 7: The filtered system implements the basic system.

Proof: The mapping f that assigns to each state s of the filtered system the singleton
set f(s) consisting of s.basicstate is easily seen to be a possibilities mapping.
Proposition 3 implies the result. o

As described above, the filtered database performs an explicit test to ensure that the
REQUESTCOMMIT of an access is not affected by the abort of any ancestor. The following
key lemma shows that this test actually guarantees more: that a similar property holds for all
events.

Lemma 8: Let 03 be a filtered behavior and let T be any transaction name. Let p be
an event in 13 such that transaction(p) = T. Then there is no ABORT(T') event (such
that (0,p) e Rp, for any ancestor T' of T.

Proof: First note that Lemma 7 and Proposition 5 imply that serial(p3) is basic
database well-formed. The proof of the lemma is by induction on the length of 3. If 13
is empty, the result clearly holds. Suppose 13 = 0't, and that the lemma holds for 3'.
From the restrictions on affects relations, R g Rp. u {((,nt) I p is an action in 13').
Thus, by induction, it suffices to show that the lemma holds when p = n.

Suppose that the lemma does not hold, i.e., that 0 = ABORT(T') affects t in 13,
where transaction(t) = T and T' is an ancestor of T. We derive a contradiction. We
consider cases.

1. T is a non-access and 7t is an output action of T.

Then by the fourth property of affects relations, there is an event W of T
between (and t such that (affects 4f in 13'. This contradicts the inductive
hypothesis.

2. T is an access to object X and t is a REQUEST-COMMIT for T.

Then by the fourth property of affects relations, there is an event X of object
X between (and t in 3' such that (affects xV in 3'. Then the precondition for
7t in the filtered database is violated, a contradiction.

3. n is CREATE(T).

Then by the fourth property of affects relations, there is a
REQUESTCREATE(T) event Vg between (and t such that (affects 4f in 3'.
Since REQUESTCREATE(T) is an action of parent(T), the inductive
hypothesis implies that T' is not an ancestor of parent(T). The only
possibility is that T' = T, which implies that ABORT(T) precedes
REQUESTCREATE(T) in 03. But this implies that serial(p3) is not basic
database well-formed, a contradiction.

4. T is a non-access and t is REPORTCOMMIT(T",v), where T" is a child of
T.

Then T' is an ancestor of T". By the fourth property of affects relations, there
is a REQUESTCOMMIT(T",v) event V' between (and nt such that 0 affects
41 in 3'. Since transaction(W) = T", this contradicts the inductive hypothesis.

26

5. T is a non-access and Kt is REPORTABORT(T"), where T" is a child of T.
By the fourth property of affects relations, there is a
REQUESTCREATE(T",v) event V between 0 and Kc such that 4 affects W in
13'. Since transaction('i) = T, this contradicts the inductive hypothesis.

6. it is a non-serial basic action.
Then transaction(it) is undefined, a contradiction.

0

5.3. Simulation of the Basic System by the Filtered System
The following theorem is the key result of this paper. It shows that the filtered system ensures

that every transaction gets a view it could get in the basic system when it is not an orphan.
(Formally, a transaction T's "view" in a behavior 3 is its local behavior, 13IT.) In other words,
an orphan cannot discover that it is an orphan, since the view it sees is consistent with its not
being an orphan. This is the basic correctness property for the orphan management algorithms.

Theorem 9: Let 13 be a filtered behavior and let T be a transaction name. Then there
exists a basic behavior y such that T is not an orphan in y and 'YT = 131T.

Proof: Let y be the subsequence of 13 containing all actions n such that transaction(it)
= T, and all other actions 4, that affect, in 13, some action whose transaction is T. Since
R is a transitive relation, y is R -closed in 13. By the definition of a family of affects
re ations, y is a basic behavior. It suffices to show that there is no ancestor T' of T for
which ABORT(T') occurs in y. Suppose not; i.e., there exists an ancestor T' of T for
which ABORT(T') occurs in y. Then by the construction of y, 13 contains an event n of
T such that an ABORT(T') event 4 affects K in 13. By Lemma 8, this is impossible. o3

We obtain an important corollary of Theorem 9.

Corollary 10: If the basic system is serially correct for non-orphans, then the filtered
system is serially correct. 18

Proof: Let 13 be a filtered behavior and let T be any transaction name. Theorem 9
yields a behavior 8 of the basic system such that T is not an orphan in 8 and 81T = 131T.
Since the basic system is serially correct for non-orphans, there is a serial behavior "y
with IT = 8IT; this is equal to 131T, as needed. 0

At first it might seem somewhat surprising that it is enough to prevent the
REQUESTCOMMIT events of orphan accesses to ensure serial correctness for all orphans.
The reason it is not necessary to filter other actions is because of the assumptions about affects
relations. Essentially, these assumptions indicate that an event, say CREATE(T), cannot
"know" about an ABORT(T') event unless some earlier event, in this case
REQUESTCREATE(T), already "knows" about the ABORT(T'). (The assumption about
affects relations that an affects-closed subsequence of a behavior is itself a behavior implies that
if 7t is not affected by 4,, t cannot know that 4, has occurred, since there is a behavior of the
system in which n occurs and 0 does not.) If we assume inductively that

181t should be easy to see that the filtered system is also a basic system, and so the notion of serial correctness has
ben defined for filtered systems. Similar comments hold for the rest of the systems described in this paper.

27

REQUESTCREATE(T) does not know about the abort of an ancestor of T, then the properties
assumed for affects relations guarantee that CREATE(T) will not know about it either.

The assumptions about affects relations derive from the restricted communication patterns in
typical systems: a non-access transaction receives information from its parent when it is created,
and from its children when they report, but not from any other source. Access transactions may
receive information from other accesses (e.g., accesses to the same object share state), but can
only affect non-accesses through a REPORTCOMMIT event, which must be preceded by a
REQUESTCOMMIT. As long as T does not receive reports from any accesses that "know"
that its ancestor has aborted, T cannot observe a state that depends on the abort. In effect, by
preventing REQUESTCOMMIT actions for orphan accesses, we isolate orphan transactions
from the objects, ensuring that an orphan transaction never sees that it is an orphan.

Sometimes we want to be explicit about the dependency of the filtered system on the particular
basic system and family of affects relations from which it is derived. Thus, we restate the
corollary above in a form that exhibits this dependency. If B is a basic system and R is a family
of affects relations for B then let Filtered(B,R) be the corresponding filtered system; it is
composed of the same transaction automata and the filtered database that corresponds to the
given basic database.

Corollary 11: Let B be a basic system and R a family of affects relations for B. If B
is serially correct for non-orphans, then Filtered(B,R) is serially correct.

6. Argus Systems
In this section we analyze the orphan management algorithm used in the Argus system [8, 9).

We describe the algorithm by defining an Argus database that describes in formal terms the
algorithm discussed in [9]. As with the filtered database, the Argus database is obtained from
the basic database via a simple construction. We then define the Argus system, which is
composed of transactions and an Argus database, and show that the Argus system implements
the filtered system. Thus, if the filtered system is serially correct, so is the corresponding Argus
system.

6.1. The Argus Database
The filtered database uses global knowledge of the entire history of actions to filter the

REQUESTCOMMIT actions of access transactions. This kind of global knowledge is not
practical in a distributed system. Thus, the Argus algorithm makes use of local knowledge about
the aborts that have occurred. To ensure that the REQUESTCOMMIT of an access is not
affected by the abort of an ancestor, the Argus algorithm keeps track of the aborts "known" by
each event that occurs, and propagates this knowledge from an event to any later events that it
affects.

In the actual Argus system, knowledge about aborts is propagated in messages sent over the
network; we model this formally by propagating knowledge from an event to every event that it
directly affects. A poor choice of a directly-affects relation could make the algorithm we
describe here hard to implement. However, if one event 0 directly affects another event rt only if
the two events occur at the same site, or if a message is sent from O's site to 7t's after 0 occurs
and before it occurs, then it is straightforward to implement the algorithm using information

28

available locally at each site, by transmitting the information about aborted transactions on
messages sent between sites.

The construction of the Argus database makes use of the given family R' of directly-affects
relations for B. The Argus database has the same signature as the basic database. The state of
the Argus database has three components: basicstate, history and knownaborts, where
basicstate is a state of the basic database, history is a sequence of basic actions, and
knownaborts is a partial mapping from basic events to sets of transactions. This mapping
records the transactions whose aborts affect each event that has occurred. The set
knownaborts(it) may actually include more transactions than those whose aborts affect it. By
adding more aborted transactions to this set, an implementation would restrict the behavior of
orphans further than is strictly necessary to ensure the correctness conditions. 19 In Argus, for
example, each event occurs at some physical node of the network, and each node manages a
single set of aborted transactions for the entire set of events that occur at that node. In this case,
knownaborts(r) includes at least the transactions whose aborts affect in, as well as those
transactions whose aborts affect any other event that has occurred at the same physical node as i.

Initial states of the Argus database are those with basicstate equal to an initial state of the
basic database, history equal to the empty sequence, and knownaborts everywhere undefined.
A triple (s',ir,s) is a step of the Argus database if and only if the following conditions hold.

1. (s'.basicstate,n,s.basic_state) is a step of the basic database.

2. s.history = s'.historyt if it is a basic action.

3. s.history = s'.history if n is not a basic action.

4. If it is a basic action and (0,n) r R's.history then s'.knownaborts(o)
s.knownaborts(t).

5. If # it, then s.knownaborts(o) = s'.known_aborts(o).

6. If ic is a basic action and 0 is an ABORT(T) event in s'.history such that (0,7n) E
R's'.history then T c s.knownaborts(n).

7. If n is a REQUEST_COMMIT(T,v) action for an access T to object X, then there
is no ancestor of T in s'.known_aborts(o), for any event 4 of object X in s'.history.

There are two significant differences between the Argus database and the basic database.
First, the effects for each action i in the Argus database require s.knownaborts(t) to include
s'.known_aborts () for each 0 that directly affects i. In addition, an event t that is directly
affected by ABORT(T) requires T to be in knownaborts(it). As Lemma 16 below shows, these
constraints are enough to ensure that s.knownaborts(nr) contains T whenever ABORT(T) affects
7E.

Second, the precondition for the REQUESTCOMMIT of an access to X permits the event to

191n fact, our description does not require the knownaborts set for an event to contain only aborted transactions.
Adding non-aborted transactions to the set might cause non-orphans to block, but will otherwise not result U';
incorrect behavior. One might like to prove that a system does not treat a non-orphan as an orphan; as with other
liveness properties, we do not address this issue here.

29

occur only if the access does not "know about" the abort of an ancestor, i.e., no ancestor is in
s'.knownaborts() for any event 4) of object X in s'.history. As Lemma 17 below shows, this is
enough to ensure that every Argus behavior is a filtered behavior.

The knownaborts mapping models the distributed information maintained by the Argus
algorithm to keep track of actions that abort. However, rather than modeling nodes directly and
keeping the information on a per-node basis as is done in the actual algorithm, we maintain the
information for each event, propagating it whenever one event directly affects another.

The knownaborts component is managed so as to insure that at least the minimum amount of
necessary information is propagated at each step. An implementation is permitted to propagate
more than the minimum; for instance, an implementation might keep track of the knownaborts
mapping at a coarser granularity. (By maintaining the knownaborts mapping on a per-node
basis, the implementation of the Argus algorithm in the current Argus prototype follows this
strategy.) In describing the algorithm, we have tried to focus on the behavior necessary for
correctness, and to avoid constraining an implementation any more than necessary.

Notice also that the Argus database does not put any upper limit on what goes into the
knownaborts mapping. For example, as described above it is permissible for knownaborts(n)
to contain a transaction that has not aborted. It would be easy (and intuitively appealing) to add
a requirement that knownaborts(t) only includes aborted transactions, but this is not necessary
to prove that the algorithm prevents all orphans from seeing inconsistent views. To prove other
properties, such as that the algorithm only detects real orphans, we would need to add additional
requirements such as the one just mentioned. We will not attempt to state or prove such
properties in this paper, the property just described is a special case of more general liveness
properties, which are an appropriate subject of further research.

Finally, while the Argus database is distinguished from the filtered database by maintaining
information about ABORT actions on a more local basis, we have kept the state component
s.history, which maintains global knowledge of the past behavior of the system. A practical
implementation of this algorithm would maintain less voluminous history information in a
distributed fashion. Examination of the additional preconditions imposed by the Argus database
on any action ic reveals that s.history is used to determine the events) that directly affect 7t, and
when 7t is a REQUESTCOMMIT(T,v) action for an access T to object X, to determine the
events that precede nt at X. The details of efficient maintenance of sufficient history information
are dependent on the particular basic database and distribution scheme, and are not addressed
further in this paper.

6.2. The Argus System
The Argus system is the composition of transactions and the Argus database. Executions,

schedules and behaviors of the Argus system are called Argus executions, Argus schedules and
Argus behaviors, respectively.

Lemma 12: The Argus system implements the basic system.

Proof: The proof is similar to that of Lemma 7. 0
Lemma 13: Let 03 be a finite Argus behavior that can leave the Argus database in

state s. Then s.knownaborts(it) is defined if and only if 7t is an event in [.

30

The following lemma says that each knownaborts set is defined at most once during an Argus
execution.

Lemma 14: Let 13'13 be a finite Argus schedule, where 13' can leave the Argus
database in state s' and (s',3,s) is an extended step of the Argus database. If
s'.known aborts(nt) is defined, then s'.knownaborts(nt) = s.knownaborts(7t).

The next lemma says that the known-aborts set for an event 7t includes all events that directly
affect 7t, and that the knownaborts set for it includes T if 7t is directly affected by an ABORT(T)
event.

Lemma 15: Let 13 be a finite Argus behavior that can leave the Argus database in
state s.

1. If 0 and 7t are events in 13 such that 0 directly affects it in J3, then
s.knownaborts(4) g s.known_aborts(nt).

2. If 7t is directly affected by an ABORT(T) event in 13 then T E

s.known-aborts(7t).

Proof: Immediate by the definition of the Argus database steps and Lemmas 13 and
14. 0

The next lemma is the key to the proof of correctness for the Argus system: it says that the
knownaborts set for an event 7c includes all transactions T such that an ABORT(T) event affects
t. In other words, the Argus database propagates enough information about aborts so that every

event t "knows about" (stores in s.known-aborts(7t)) every abort that affects it.

Lemma 16: Let 13 be a finite Argus behavior that can leave the Argus database in
state s. If 0 and 7t are events in 13 such that 0 affects it in 13 and 0 is an ABORT(T)
event, then T e s.knownaborts(nt).

Proof: The proof proceeds by induction on the length of the chain in the directly-
affects relation by which 0 affects 7r in 03. If the length of the chain is 1, then 0 directly
affects t in 13. Then Lemma 15 implies that T e s.known_aborts(n).

Now suppose that the length of the chain is k+l, where k >_ 1. Then there is an event
xV in P3such that 0 affects xV in 13 by a chain of length at most k and XV directly affects n
in 13. By inductive hypothesis, T e s.known-aborts(i). Lemma 15 implies that
s.knownaborts(W) s.known_aborts(nt), so that T e s.knownaborts(7t). 03

6.3. Simulation of the Basic System by the Argus System
The following lemma shows that the information in known-aborts, combined with the

precondition on REQUEST_COMMIT actions for accesses, is enough to ensure that the Argus
system implements the filtered system.

Lemma 17: The Argus system implements the filtered system.

Proof: We define a mapping f that assigns to each state s of the Argus system the
singleton set f(s) consisting of the state of the filtered system that is the same except
for the omission of the s.knownaborts component of the Argus database state. We
must show that f is a possibilities mapping. Condition 1. is easy to check. For
condition 2., suppose that s' is a reachable state of the Argus system, t' 6 f(s') is a
reachable state of the filtered system, and (s',Tt,s) is a step of the Argus system. The

31

only interesting case to check is when t = REQUESTCOMMIT(T,v), where T is an
access to an object X. In this case, we claim that (t',7r,t) is a step of the filtered system,
where t is the single element of f(s).

To show that (t',ir,t) is a step of the filtered system, we must show the four
conditions defining these steps. The first three are immediate from the definition of
the steps of the Argus database. To see the fourth, suppose that T' is an ancestor of T.
We must show that no ABORT(T') event affects an event of object X in t'.history.
Suppose the contrary, that an ABORT(T') event (affects an event XV of object X in
t'.history. Then (also affects V in s'.history. By Lemma 16, T' E s.known aborts(W).
But this violates the precondition for it in the Argus database. Therefore, t is enabled
in V. 13

The following theorem shows that Argus systems, like filtered systems, ensure that every non-
access transaction gets a view it could get in an execution in which it is not an orphan.

Theorem 18: . Let 13 be an Argus behavior and let T be a transaction name. Then
there exists a basic behavior y such that T is not an orphan in y and YT = 3IT.

Proof: Immediate by Lemma 17 and Theorem 9. 1

As for the filtered system, we obtain an important corollary about serial correctness.

Corollary 19: If the basic system is serially correct for non-orphans, then the Argus
system is serially correct.

Again, we give a version of the preceding corollary in which the dependency of the Argus
system on the basic system is made explicit. If B is a basic system and R' is a family of directly-
affects relations for B, then let Argus(B,R') be the corresponding Argus system; it is composed
of the same transaction automata and the Argus database that is constructed from the given basic
database, using the given family of relations R'.

Corollary 20: Suppose B is a basic system and R' is a family of directly-affects
relations for B. If B is serially correct for non-orphans, then Argus(B,R') is serially
correct.

7. Strictly Filtered Systems
The orphan management algorithm described in [16] actually ensures a stronger property than

does the Argus algorithm. It ensures that REQUESTCOMMIT can never occur for an orphan
access, whereas the Argus algorithm merely ensures that no such REQUESTCOMMIT can
occur if the access can "observe" that it is an orphan. In this section we define the "strictly
filtered database," which allows a REQUESTCOMMIT to occur for an access only if no
ancester has aborted. (Compare this to the filtered database, which allows an access to
REQUESTCOMMIT if an ancestor has aborted as long as the access is not affected by the
a-ort.) We then define the strictly filtered system, which is composed of transactions and the
stiictly filtered controller, and show that the strictly filtered system implements the filtered
system. In the next section we will describe formally the algorithm from [16] and show that it
implements the strictly filtered system.

32

7.1. The Strictly Filtered Database
The strictly filtered database is similar to the filtered database; it has the same actions, and the

same states. A triple (s',nt,s) is a step of the strictly filtered database if and only if the following
conditions hold.

1. (s'.basic-state,7,s.basic-state) is a step of the basic database.

2. s.history = s'.historyir if 7t is a basic action.

3. s.history = s'.history if it is not a basic action.

4. If i = REQUESTCOMMIT(T,v) where T is an access, and T' is an ancestor of T,
then no ABORT(T') event occurs in s'.history.

Thus, at the point where the REQUESTCOMMIT of an access is about to occur, an explicit
test is performed to verify that there is no preceding abort of any ancestor of the access.

7.2. The Strictly Filtered System
The strictly filtered system is the composition of transactions and the strictly filtered database.

Executions, schedules and behaviors of the strictly filtered system are strictly filtered executions,
schedules and behaviors, respectively.

Lemma 21: The strictly filtered system implements the basic system.

Proof: The proof is similar to that of Lemma 7. r

7.3. Simulation of the Basic System by the Strictly Filtered System
Lemma 22: The strictly filtered system implements the filtered system.

Proof: We define a mapping f that assigns to each state s of the strictly filtered
system the singleton set f(s) that consists of the same state. We must show that f is a
possibilities mapping. Condition 1. is easy to check. For condition 2., suppose that s'
is a reachable state of the strictly filtered system, t' e f(s') is a reachable state of the
tiltered system, and (s',n,s) is a step of the strictly filtered system. As before, the only
interesting case to check is when ir = REQUESTCOMMIT(T,v), where T is an access
to an object X. In this case, we claim that (t',7c,t) is a step of the filtered system, where
t is the unique element of f(s).

To show that (t',n,t) is a step of the filtered system, we must show the four
conditions defining these steps. The first three are immediate from the definition of
the steps of the srictly filtered database. To see the fourth, suppose that T' is an
ancestor of T. We must show that no ABORT(T') event affects an event of object X in
t'.history. But t'.history = s'.history, and by the preconditions for 7t in the strictly
filtered database, no ABORT(T') event occurs in s'.history. Therefore, no
ABORT(T') event affects an event of object X in t'.history. Thus, it is enabled in t'. 0

Strictly filtered systems, like filtered systems and Argus systems, prevent orphans from
discovering that they are orphans.

Theorem 23: Let 0 be a strictly filtered behavior and let T be a transaction name.
Then there exists a basic behavior y such that T is not an orphan in y and YT = P3!T.

Proof: Immediate by Lemma 22 and Theorem 9. 0

33

Corollary 24: If the basic system is serially correct for non-orphans, then the strictly
filtered system is serially correct.

If B is a basic system, let Strictly-Filtered(B) be the corresponding strictly filtered system; it is
composed of the same transaction automata and the strictly filtered database that corresponds to
the given basic database.

Corollary 25: Suppose that B is a basic system. If B is serially correct for non-
orphans then Strictly-Filtered(B) is serially correct.

8. Clocked Systems
In this section we describe formally the orphan management algorithm from [16]. (The

algorithm described here actually generalizes the one described in [16]. The algorithm in [161
delays commits of transactions, as well as aborts, while the algorithm described here delays only
aborts. A similar generalization is described in [17].) We do this by defining the "clocked
database," which uses a global clock to ensure that transactions do not abort until all their
descendant accesses have stopped running. We then define the clocked system, which is
composed of transactions and the clocked database. Finally, we show that the clocked system
implements the strictly filtered system, and thus simulates the basic system in the same way as
the previously mentioned systems do.

8.1. The Clocked Database
The clocked database maintains a quiesce time for each access transaction and a release time

for every transaction. An access transaction is allowed to REQUESTCOMMIT only if its
quiesce time has not passed. Release times are chosen so that once a transaction's release time is
reached, all its descendant accesses have quiesced. A transaction is allowed to abort only if its
release time has passed. This ensures that, after a transaction aborts, none of its descendant
accesses will request to commit.

If quiesce and release times are fixed in advance, some transactions may be forced to abort
unnecessarily as their quiesce times expire, and aborts may need to be delayed until release times
are reached. It is possible to obtain extra flexibility by providing actions in the clocked database
for adjusting quiesce and release times.

The action signature of the clocked database is the same as that of the basic database, except
that the clocked database has three additional kinds of internal actions. The new actions are:

Internal Actions:
TICK
ADJUSTQUIESCE(T), T an access
ADJUSTRELEASE(T), T any transaction

The TICK action advances the clock, while the two ADJUST actions adjust quiesce and
release times. By adjusting the quiesce time for a transaction to be later than its current value,
we can extend the time during which a transaction is allowed to run. Similarly, by adjusting the
release time for a transaction to be earlier than its current value, we can allow a transaction to
abort without waiting as long as would otherwise be necessary.

34

The state of the clocked database consists of components basicstate, aborted, clock, quiesce,
and release. Here, basicstate is a state of the basic database, initialized at an initial state of the
basic database. The component aborted is a set of transactions, initially empty. The component
clock is a real number, initialized arbitrarily. The component quiesce is a total mapping from
access transaction names to real numbers, and the component release is a total mapping from all
transaction names to real numbers. The initial values of quiesce and release are arbitrary, subject
to the following condition: for all transaction names T and T', where T is an access and T' is an
ancestor of T, quiesce(T) < release(T').

A triple (s',xt,s) is a step of the clocked database if and only if the following conditions hold.
1. If it is an action of the basic system, then (s'.basic-state,t,s.basic state) is a step of

the basic database.

2. If t is a TICK, ADJUSTQUIESCE or ADJUST-RELEASE action, then
s.basicstate = s'.basicstate.

3. If 7t = ABORT(T) then
a. s.aborted = s'.aborted u {T}.

b. s'.release(T) < s'.clock.

4. If 7t is not an abort action, then s.aborted = s'.aborted.

5. If 7t = REQUESTCOMMIT(T,v) where T is an access, then s'.clock <
s'.quiesce(T).

6. If t = TICK then s'.clock < s.clock.

7. If it is not a TICK action, then s.clock = s'.clock.

8. If t = ADJUSTRELEASE(T) then
a. if T e s'.aborted then s.release(T) < s'.clock,

b. s'.quiesce(T') < s.release(T) for all T' c descendants(T) r) accesses, and

c. s.release(T') = s'.release(T') for all T' * T.

9. If t is not an ADJUSTRELEASE action, then s.release = s'.release.

10. If 7t = ADJUSTQUIESCE(T) then

a. s.quiesce(T) < s'.release(T') for all T' e ancestors(T), and

b. s.quiesce(T') = s'.quiesce(T') for all T' # T.

11. If t is not an ADJUSTQUIESCE action, then s.quiesce = s'.quiesce.
Lemma 26: Let P3 be a finite schedule of the clocked database that can leave the

clocked database in state s.
1. If T e s.aborted then s.release(T) !5 s.clock.

2. For all accesses T and all ancestors T' of T, s.quiesce(T) _< s.release(T" ,
Proof: Straightforward by induction. 0

35

8.2. The Clocked System
The clocked system is the composition of transactions and the clocked database. External

actions of the clocked system are called clocked actions. Executions, schedules ,nd behaviors of
a clocked system are called clocked executions, schedules and behaviors, respectively.

Lemma 27: The clocked system implements the basic system.
Proof: The proof is similar to that of Lemma 7. 0

8.3. Simulation of the Basic System by the Clocked System
Lemma 28: The clocked system implements the strictly filtered system.
Proof: We define a mapping f that assigns to each state s of the clocked system the

set f(s) of states t of the strictly filtered system such that t.basicstate = s.basicstate
and t.history is a sequence of basic actions in which the set of transaction names T for
which ABORT(T) occurs in t.history is exactly s.aborted. We must show that f is a
possibilities mapping. Condition 1. is easy to check. For condition 2., suppose that s'
is a reachable state of the clocked system, t' c f(s') is a reachable state of the strictly
filtered system and (s',7t,s) is a step of the clocked system.

There are two interesting case- to check: where 7t = ABORT(T) and where t =
REQUESTCOMMIT(T,v) for an access T. In either case, we claim that (t',ir,t) is a
step of the strictly filtered system, where t is the state of the strictly filtered system in
which t.basicstate = s.basicstate and t.history = t'.historyit, and we also claim that t
E f(s).

If t = ABORT(T), it is easy to see that (t',it,t) is a step of the strictly filtered system.
To show t e f(s), note that since t' r f(s'), the set of transaction names U for which
ABORT(U) occurs in t'.history is exactly s'.aborted. Then the set of transaction
names with aborts in t.history is exactly s'.aborted u {TI, which is equal to s.aborted.
Thus, t r f(s).

If t = REQUESTCOMMIT(T,v), where T is an access, then it is easy to see the
first three conditions of the definition of strictly filtered database steps. For the fourth
condition, we must show that if T' is an ancestor of T, then no ABORT(T') event
occurs in t'.history. So suppose the contrary, that T' is an ancestor of T and
ABORT(T') occurs in t'.history. Since t' E f(s'), we have T' E s'.aborted. Since 7t is
enabled in s', s.clock < s'.quiesce(T). Lemma 26 implies that s'.release(T') _< s'.clock
and also that s'.quiesce(T) < s'.release(T'). Thus, s'.quiesce(T) < s'.clock, a
contradiction. It follows that (t',7r,t) is a step of the strictly filtered system.

Since t' e f(s'), the set of transaction names U for which ABORT(U) occurs in
t'.history is exactly s'.aborted. Then the set of transaction names with aborts in
t.history is exactly s'.aborted = s.aborted. Thus, t r f(s). 0

Theorem 29: Let 13 be a clocked behavior and let T be a transaction name. Then
there exists a basic behavior y such that T is not an orphan in Y and YT = 13IT.

Proof: By Lemma 28 and Theorem 23. 0

Corollary 30: If the basic system is serially correct for non-orphans, then the
clocked system is serially correct.

If B is a basic system, then let Clocked(B) be the corresponding clocked system; it is

36

composed of the same transaction automata and the clocked database of the appropriate type.
Corollary 31: Suppose B is a basic system. If B is serially correct for non-orphans,

then Clocked(B) is serially correct.

The algorithm described here uses a single physical clock to detect and eliminate orphans. The
algorithm can be adapted to work with distributed, loosely synchronized physical clocks, or with
logical clocks (e.g., see [17]). The adapted algorithms can be described and analyzed in a
manner similar to that used for the Argus algorithm.

9. Examples
In this section, we describe two important kinds of basic systems, together with a family of

affects relations (and a generating family of directly-affects relations) foi each of them. The first
kind of system is a "generic system." It is suitable for modeling locking algorithms and has
been studied in [4]. The second is a "pseudotime system." It is suitable for modeling
timestamp algorithms and has been studied in [2].

9.1. Generic Systems
A generic system consists of a collection of transaction automata, onc for each non-access

transaction name, a collection of "generic object automata," one for each object name, and a
single "generic controller automaton." The interactions between the components are as follows.

The transaction interface is exactly as before. The generic object automaton for X has
CREATE(T) input actions and REQUESTCOMMIT(T,v) output actions for each access T to X
and each return value v. It also has INFORMCOMMITAT(X)OF(T) and
INFORM_ABORTAT(X)OF(T) input actions fo, each transaction T; these actions inform the
object X of the fates (commit or abort) of completed transactions. The object uses this
information in carrying out concurrency control and recovery; for example, an
!NFORM_ABORT of T might cause the object to release locks held by T.

The external actions of the generic controller are similar to those required of all basic
databases: it has the inputs and outputs required of a basic database, except that
REQUESTCOMMIT actions for access transactions are inputs to the generic :ontroller; in
addition, it has INFORMCOMMIT and INFORMABORT actions as outputs.

We model the generic controller as a specific automaton, particular to the system type. The
object automata, however, like the transaction automata, are only partially specified. Their
signature is as described above, and they are constrained to preserve an appropriately defined
well-formedness property. Otherwise, they are unconstrained. In particular, the semantics of
their operations is immaterial to our discussion. In this paper, we are concerned only with
whether the entire generic database is serially correct for non-orphans, in which case the various
algorithms presented earlier guarantee the transformed system is serially correct for all
transaction names. The problem of ensuring that specific generic systems are serially correct for
non-orphans is addressed elsewhere [4].

37

9.1.1. Generic Actions and Well-Formedness
For a generic system, we extend the object mapping as follows. Define object(n) = X if t is an

INFORMCOMMIT AT(X)OF(T) or INFORMABORTAT(X)OF(T) action. We define the
generic actions to be the serial actions, plus the INFORMCOMMIT and INFORM-ABORT
actions.

Now we define "generic object well-formedness." Let X be any object name. A sequence [3
of generic actions t with object(n) = X is defined to be generic object well-formed for X
provided that the following conditions hold.

1. There is at most one CREATE(T) event in 3 for any transaction T.

2. There is at most one REQUESTCOMMIT event in 3 for any transaction T.

3. If there is a REQUESTCOMMIT event for access transaction T in 3, then there is
a preceding CREATE(T) event in [3.

4. There is no transaction T for which both an INFORMCOMMITAT(X)OF(T)
event and an INFORMABORTAT(X)OF(T) event occur.

5. If an INFORMCOMMITAT(X)OF(T) event occurs in 3 and T is an access to X,
then there is a preceding REQUEST_COMMIT event for T.

The following simple lemma shows a connection between transaction well-formedness for
accesses and generic object well-formedness.

Lemma 32: Suppose 3 is a sequence of generic actions 7t with object(rt) = X. If [3 is
generic object well-formed for X and T is an access to X, then 31T is transaction well-
formed for T.

9.1.2. Generic Object Automata
A generic object automaton G for an object name X is an 1/0 automaton with the following

external action signature.

Input:
CREATE(T), for T an access to X
INFORM_COMMIT_AT(X)OF(T), for T any transaction name
INFORMABORTAT(X)OF(T), for T any transaction name

Output:
REQUESTCOMMIT(T,v), for T an access to X and v a value

In addition, G may have an arbitrary set of internal actions. G is required to preserve generic
object well-formedness. Except for this well-formiedness requirement, generic object automata
can be chosen arbitrarily.

Generic objects are similar to the abstract objects of Argus and other "object-oriented"

systems. A generic object provides a set of accesses through which other transactions can

observe and change the object's state. (These accesses can be thought of as instances of the
"operations" usually assumed for objects in object-oriented systems.) Accesses can be invoked
by concurrent transactions, and transactions can abort; thus, in generic transaction-processing
systems that guarantee serial correctness, generic objects must provide synchronization and
recovery. The objects studied in (11, 12], which use an exclusive locking variation of Moss's

38

algorithm [18] for synchronization combined with version stacks fcr recovery, are examples of
generic objects that provide synchronization and recovery sufficient to ensure serial correctness
for non-orphans. Similarly, the more general objects studied in [41, which use a commutativity-
based locking algorithm that permits concurrent updates, are also generic objects that ensure
serial correctness for non-orphans.

9.1.3. Generic Controller
The third kind of component in a generic system is the generic controller. The generic

controller is also modeled as an 1/O automaton. The transactions and generic objects have been
specified to be any automata whose actions and behavior satisfy certain simple syntactic
restrictions. A generic controller, however, is a fully specified automaton, particular to each
system type. (Recall that we have assumed that the system type is fixed; we describe the generic
controller for the fixed system type.)

The generic controller passes requests for the creation of subtransactions to the appropriate
recipients, makes decisions about the commit or abort of transactions, passes reports about the
completion of children back to their parents, and informs objects of the fate of transactions. It
allows concurrency and aborts, and leaves the task of coping with them to the generic objects.

The generic controller is a very nondeterministic automaton. It may delay passing requests or
reports or making decisions for arbitrary lengths of time, and may decide at any time to abort a
transaction whose creation has been requested (but that has not yet completed). The generic
controller can be implemented in many different ways by controllers that make specific choices
from among the many nondeterministic possibilities. For instance, Moss [181 ,iescribes a
distributed implementation of the generic controller that copes with node and communication
failures yet still commits a subtransaction whenever possible. Our results apply a fortiori to all
implementations of the generic controller obtained by restricting the nondeterminism.

The generic controller has the following action signature.

Input:
REQUESTCREATE(T), T# To

REQUESTCOMMIT(T,v)

Output:
CREATE(T)
COMMIT(T), T # To

ABORT(T), T # To

REPORT_CCMMIT(T,v), T # To

REPORTABORT(T), T# To

INFORMCOMMITAT(X)OF(T), T# To

INFORMABORTAT(X)OF(T), T # To

The REQUESTCREATE and REQUESTCOMMIT inputs are intended to be identified with
the corresponding outputs of transaction and generic object a tomata, and correspondingly for
the output actions.

Each state s of the generic controller consists of six sets: s.create-requested, s.created,

39

s.commitrequested, s.committed, s.aborted and s.reported. The set s.commitrequested is a set
of (transaction,value) pairs, and the others are sets of transaction names. All are empty in the
start state except for createrequested, which is (TO}. Define s.completed = s.committed u
s.aborted.

The transition relation of the generic controller consists of exactly those triples (s',ir,s)
satisfying the preconditions and yielding the effects described below, where it is the indicated
action. We include in the effects only those conditions on the state s that may change with the
action. If a component of s is not mentioned in the effects, it is implicit that the set is the same in
s' and s.

REQUESTCREATE(T), T * To
Effect:

s.create requested = s'.createrequested u {T)

REQUEST COMMIT(T,v)
Effect:

s.commit_requested = s'.commit-requested u (T,v) }

CREATE(T)
Precondition:

T E s'.create-requested - s'.created
Effect:

s.created = s'.created u (T)

COMMIT(T), T * To

Precondition:
(T,v) e s'.commit-requested for some v
T e s'.completed

Effect:
s.committed = s'.committed u (T}

ABORT(T), T * To

Precondition:
T e s'.create-requested - s'.completed

Effect:
s.aborted = s'.aborted u {T}

REPORT_COMMIT(T,v), T * To

Precondition:
T e s'.committed
(T,v) e s'.commitrequested
T e s'.reported

Effect:
s.reported = s'.reported u {T}

REPORTABORT(T), T * To

Precondition:
T e s' aborted
T e s'.reported

Effect:

40

s.reported = s'.reported u {T)

IN-FORMCOMMITAT(X)OF(T), T # To
Precondition:

T r s'.committed

INFORM_ABORT AT(X)OF(T), T # To

Precondition:
T E s'.aborted

The generic controller assumes that its input actions, REQUESTCREATE and
REQUESTCOMMIT, can occur at any time, and simply records them in the appropriate
components of the state. Once the creation of a transaction has been requested, the controller
can create it by producing a CREATE action. The precondition of the CREATE action indicates
that a given transaction will be created at most once; the effect of the CREATE is to record that
the creation has occurred. Similarly, the effect of a COMMIT or ABORT action is to record that
the action has occurred. REPORTCOMMIT, REPORTABORT, INFORMCOMMIT and
INFORMABORT actions can be generated at any time after the corresponding COMMIT and
ABORT actions have occurred. The precondition for a COMMIT action ensures that a
transaction only commits if it has requested to do so, and it has not already completed
(committed or aborted). The precondition for an ABORT action ensures that a transaction will
be aborted only if a REQUEST-CREATE has occurred for it and it has not already completed.
There are no other constraints on when a transaction can be aborted, however. For example, a
transaction can be aborted while some of its descendants are still running.

The following lemma follows easily by induction, using simple invariants maintained by the
generic controller. (E.g., see [4].)

Lemma 33:
1. Let T be any transaction name. Then the geneic controller preserves

transaction well-formedness for T.

2. Let X be any object name. Then the generic controller preserves generic
object well-formedness for X.

3. The generic controller preserves basic database well-formedness.

9.1.4. Generic Database
A generic databas !', the composition of a strongly compatible set of automata indexed by the

union of the set of object names and the singleton set (GC) (for "generic controller").
Associated with each object name X is a generic object automaton GX for X, and associated with
the name GC is the generic controller automaton for the system type.

Lemma 34: If 3 is a behavior of a generic database, then for every object name X,
[3 X is generic object well-formed.

Proof: Let X be an object name. Of the components of the generic database, only
GX and the generic controller have external actions t for which object(r) = X. The
other components thus trivially preserve generic object well-formedness for X. By
explicit assumption, Gx preserves generic object well-formedness for X, and by
Lemrna 33, the generic controller preserves generic object well-formedness for X. The

41

result follows from Proposition 4. 03

Lemma 35: Let B be a generic database. Then B preserves basic database well-
formedness.

Proof: A simple case analysis. The only subtle case is when P3nt is a behavior of B,
with 13 basic database well-formed and t a REQUEST COMMIT(T,v) event for an
access T to X. The argument that P3ntIT is transaction well-formed for T depends upon
the fact that O3ntIX is generic object well-formed for X, as shown in Lemma 34. 13

It follows that the generic database is an example of a basic database.

9.1.5. Generic Systems
A generic system is the composition of a strongly compatible set of automata indexed by the

union of the set of non-access transaction names, the set of object names and the singleton set
(GC}. Associated with each non-access transaction name T is a transaction automaton AT for T.
Associated with each object name X is a generic object automaton GX for X. Finally, associated
with the name GC is the generic controller automaton for the system type.

When the particular generic system is clear from context, we call its executions, schedules and
behaviors the generic executions, generic schedules and generic behaviors, respectively.

9.1.6. A Family of Affects Relations
Now we define a family R = {R I of affects relations for any particular generic system B. We

do this by first defining a family R' = {R'p} of directly-affects relations for B, and then taking
transitive closures. For a sequence 13 of generic actions, define the relation R'p to be the relation
containing the pairs (O,nt) of events such that 4 occurs before 7t in 3, and at least one of the
following holds:

* transaction(O) = transaction(ic) and it is an output event of the transaction,

* object(O) = object(n) and 7t is a REQUESTCOMMIT(T,v) event,

.4) is a REQUESTCREATE(T) and t a CREATE(T) event,

0 4 is a REQUESTCOMMIT(T,v) and t a COMMIT(T) event,

* 4 is a REQUESTCREATE(T) and it an ABORT(T) event,

0 4) is a COMMIT(T) and it a REPORTCOMMIT(T,v) event,

* 4 is an ABORT(T) and n a REPORTABORT(T) event,

* 4 is a COMMIT(T) and t an INFORMCOMMITAT(X)OF(T) event, or

.4) is an ABORT(T) and i an INFORMABORTAT(X)OF(T) event.

Now define the relation RP to be the transitive closure of R'p. It is easy to see that R3 is an
irreflexive partial order.

The idea is that 4) directly affects 7t if they both occur at the same transaction or object (and it

is an output of the transaction, or a REQUESTCOMMIT of the object), or if they involve
different transactions or objects but the generic system will require 4) to occur before n can occur.
This notion of one event affecting another is "safe," in the sense that 4 affects n if there is any

42

way that the precondition for it could require 4) to have occurred. If the events involve different
transactions or objects, the preconditions for it in the generic controller require 40 to occur if 4)
directly affects t. If the events occur at the same transaction or object, however, it might be that
,0 happens to occur before 7t, yet that the particular transaction or object does not require 4 to
occur before t. In the absence of more information about the particular transactions or objects
used in a system, however, it is difficult to say more about the ways in which one event can
affect another. Thus, we make the "safe" choice of assuming an effect whenever one could
occur. Fortunately, the orphan management algorithms described earlier in this paper are
essentially independent of the particular transactions and objects used in a system, and do not
rely on more information about them.

The next few lemmas show that the family {Rp} defined above is a family of affects relations
for B.

Lemma 36: If 1 is a finite behavior of generic system B and y is an Ro-closed
subsequence of 13, then y is a behavior of B.

Proof: For each non-access transaction name T, let AT be the transaction automaton
for T in B, and for each object name X, let GX be the generic object automaton for X
in B. By Proposition 2, it suffices to show that ytT is a behavior of AT for all non-
access transaction names T, that YiX is a behavior of Gx for all object names X, and
that y is a behavior of the generic controller. We show these in turn.

First, suppose that T is a non-access transaction name. If YIT contains no output
events of AT, then the input-enabling property implies that YIT is a behavior of AT. So
assume that there is at least one output event of AT in 7IT, and let 7t be the last such
event. Let y' be the prefix of y ending with 7t. Since y is closed in 13, it follows from
the definition of Rp that y contains all events of T that precede t in 13. Thus, y'IT is a
prefix of I31T and so is a behavior of AT. Since YIT differs from y'IT only by the
possible inclusion of some final input events of AT, the input-enabling property
implies that YlT is a behavior of AT.

A similar argument shows that if X is an object name, then YtX is a behavior of GX.

Now we show that y is a behavior of the generic controller. Note that the generic
controller is deterministic in the sense that for a given state s' and action it, there is at
most one state s such that (s',7t,s) is a step of the generic controller. We proceed by
induction on the lengths of prefixes 8 of y. The basis, where the length of 8 is 0, is
obvious. So suppose that 8 = 8't, where 7t is a single event. Let 3'r be the prefix of 13
ending with t. We consider cases, showing in each case that t is enabled after 5'.

1. 7t = CREATE(T)
Then Lemma 35 and Proposition 5 imply that REQUEST_CREATE(T)
occurs in 13', and no CREATE(T) occurs in 13'. Since y is R -closed in 13,
REQUESTCREATE(T) also occurs in 5'. Similarly, no CRE2 TE(T) occurs
in 5'. If follows that t is enabled in the (unique) state in which 8' can leave
the generic controller. Thus, 7t is enabled after 6'.

43

2. it - COMMIT(T)
Then Lemma 35 and Proposition 5 imply that [3' contains
REQUESTCOMMIT(T,v) and contains no completion events for T. Since y
is Rp-closed in P3, 5' contains REQUESTCOMMIT(T,v), and does not
contain a completion event for T. It follows that n is enabled after 5'.

3. it = ABORT(T)
Then 3' contains REQUESTCREATE(T) and contains no completion events
for T, so 5' contains REQUESTCREATE(T) and no completion events for
T. Thus, nt is enabled after 5'.

4. t = REPORTCOMMIT(T,v)

Then 3' contains COMMIT(T) and REQUESTCOMMIT(T,v), and contains
no report events for T. Therefore, the same is true of 5', so n is enabled after
5,.

5. iT = REPORTABORT(T)

Similar to the preceding arguments.
6. it = INFORMCOMMIT_AT(X)OF(T)

Similar to the preceding arguments.
7. t = INFORMCOMMITAT(X)OF(T)

SimiL._r to the preceding arguments.

0

Lemma 37: The family {Rp} is a family of affects relations for B.
Proof: The first two properties of families of affects relations are immediate from

the definition of { Rp}. The third property is proven in the lemma above.

The fourth property requires that whenever an ABORT(T) event 0 affects an event t
of certain types, there is a specific type of intervening event V that is also affected by
0. To see that this property is satisfied, note that Rp is defined as the transitive closure
of the directly-affects relation R'p. Each type of event x of interest is only directly
affected by earlier events that satisfy the restrictions on V. Thus, if 1t is affected by 0,
it must be so affected by the transitive closure over a chain of directly-affects relations
in which an event xV of the appropriate type occurs. 01

9.1.7. Applying Orphan Management Algorithms to Generic Systems
Since we have shown that generic systems are instances of basic systems, and that the directly-

affects relation we defined above generates a family of affects relations, we may apply our
general results for orphan management algorithms to generic systems. Before we state these
results, we illustrate one orphan management transformation by describing explicitly the steps of
the system obtained by applying the Argus algorithm to a generic system.

If B is a generic system and R' is the family of directly-affects relations given above, then the
steps of Argus(B,R'p) are definedas follows.

" (s'.basic state,it,s.basic-state) is a step of the generic database.

" s.history = s'.historynt if 7t is a basic action.

• s.history = s'.history if t is not a basic action.

44

" If n it, then s.knownaborts(O) = s'.knownaborts(o).

" If 7t is a REQUESTCREATE(T) action, then s'.known-aborts(b) c
s.knownflboits~s) Zor all , in s'.history su .h that transaction(,) = parent(T).

" If 7t is a REQUEST_COMM1T(T,v) action, where T is a non-access transaction
name, then s'.knownaborts(o) c s.knownaborts(7t) for all 4, in s'.history such that
transaction(O) = T.

* If 7t is a REQUESTCOMMIT(T,v) action, where T is an access transaction name,
then s'.knownaborts(,) g s.known-aborts(n) for all 4 in s'.history such that
object(o) = object(T).

" If it is a CREATE(T) action, then s'.knownaborts(o) Q s.knownaborts(nt) for all
REQUESTCREATE(T) events 0 in s'.history.

* If it is a COMMIT(T) action, then s'.knownaborts(o) c s.known_aborts(7r) for all
REQUESTCOMMIT(T,v) events 0 in s'.history.

* If it an an ABORT(T) action, then s'.known_aborts(o) s.known_aborts(it) for all
REQUESTCREATE(T) events 4 in s'.history.

" If it is a REPORTCOMMIT(T,v) action, then s'.known-aborts(o)
s.known-aborts(it) for all COMMIT(T) events 4 in s'.history.

" If t is a REPORTABORT(T) action, then s'.known-aborts(o)
s.known-aborts(it) for all ABORT(T) events 0 in s'.history, and T e
s.knownaborts(t).

" If ic is an INFORMCOMMIT AT(X)OF(T) action, then s'.knownaborts(,)
s.known aborts(t) for all COMMIT(T) events 4 in s'.history.

" If it is an INFORM_ABORTAT(X)OF(T) action, then s'.knownaborts(o)
s.known-aborts(t) for all ABORT(T) events 4 in s'.history, and T E
s.knownaborts(it).

" If it is a REQUESTCOMMIT(T,v) action for an access T to object X, then there is
no ancestor of T in s'.known-aborts(4,), for any event 0 of object X in s'.history.

The filtered database uses global information about the history to prevent the
REQUESTCOMMIT of an access from occurring if it would be affected by an ABORT of an
ancestor. The Argus database uses more lcal information, which is obtained by propagating the
known-aborts sets from each event to any later events that it directly affects. For example,
consider the application above of the Argus algorithm to a generic database. The knownaborts
set for a REQUESTCREATE(T) action is obtained from the knownaborts sets for all
preceding events at parent(T). Since REQUESTCREATE(T) is generated by parent(T), the
knownaborts set for it can easily be computed with information available locally at parent(T)
when the REQUEST_CREATE(T) action occurs. A similar situation arises with
REQUESTCOMMIT actions, which are outputs of transactions and objects. The other actions,
which are outputs of the generic controller, are directly affected by exactly one preceding event.
Thus, the knownaborts set for one of these actions can easily be computed from the
knownaborts set for the single event that precedes it. For instance, the knownaborts set for a
CREATE(T) event can be obtained directly from the knownaborts set for the preceding
REQUESTCREATE(T) event. If the two events occur at the same site in a network, this

45

information would be available locally; if they occur at different sites, it could be sent in the
message used to transmit the REQUESTCREATE event to the site that performs the CREATE
event.

The following corollary shows that the Argus algorithm and the clocked algorithm from (161
can both be used for a generic system:

Corollary 38: Let B be a generic system, and R and R' the family of affects and
directly-affects relations defined above. If B is serially correct for non-orphans, then
the following are true:

* Filtered(B,R) is serially correct.

* Argus(B,R') is serially correct.

e Strictly-Filtered(B) is serially correct.

e Clocked(B) is serially correct.

9.2. Pseudotime Systems
The essential feature of systems using timestamps is the explicit construction of a sibling order

representing the intended serialization of an execution. This order is represented in terms of
intervals of pseudotime, an arbitrarily chosen totally ordered set. Formally, we let Rbe the set of
pseudotimes, ordered by <. We represent pseudotime intervals as half-open intervals [p,q) in P,
and refer to them using capital letters. If P = [p,q), then we write Pmin for p and Pmax for q. If P
and Q are intervals of pseudotime, we write P < Q if Pmax < Qmin" Clearly, if P < Q, then P and
Q are disjoint.

A pseudotime system consists of a collection of transaction automata, one for each non-access
transaction name, a collection of "pseudotime object automata," one for each object name, and
a single "pseudotime controller automaton." The interactions between the components are as
follows. The transaction interface is exactly as before. A pseudotime object automaton for X
has the same actions as a generic object automaton, with the addition of
INFORMTIMEAT(X)OF(T,p) input actions to inform the object that pseudotime p has been
assigned to an access transaction T. The pseudotime controller has the same actions as the
generic controller, with the addition of INFORMTIMEAT(X)OF(T,p) output actions (for
access transactions T) and ASSIGNPSEUDOTIME(T,P) output actions (for all transactions T)
by which the controller assigns the pseudotime range P to transaction T.

9.2.1. Pseudotime Actions and Well-formedness
The object mapping for a pseudotime system is the same as that for a generic system, with the

addition that we define object(n:) = X if 7t is an INFORMTIMEAT(X)OF(T,p) action. We
define the pseudotime actions to be the generic actions, plus the INFORMTIME and
ASSIGNPSEUDOTIME actions.

Now we define "pseudotime object well-formedness." Let X be any object name. A
sequence of pseudotime actions t with object(n) = X is defined to be pseudotime object
well-formed for X provided that the following conditions hold.

1. There is at most one CREATE(T) event in 13 for any transaction T.

46

2. There is at most one REQUESTCOMMIT event in 13 for any transaction T.

3. If there is a REQUESTCOMMIT event for T in 13, then there is a preceding
("PEATF(T) event ,nd also . preceding LNFORN_ T M AT(X)IOFT, in 0- .

4. There is no transaction T for which there are two different pseudotimes, p and p',
such that INFORMTIMEAT(X)OF(T,p) and INFORMTIMEAT(X)OF(T,p')
both occur in 13.

5. There is no pseudotime p for which there are two different transactions, T and T',
such that INFORMTIME-AT(X)OF(T,p) and INFORMTIMEAT(X)OF(T',p)
both occur in 13.

6. There is no transaction T for which both an INFORMCOMMITAT(X)OF(T)
event and an INFORMABORTAT(X)OF(T) event occur.

7. If an INFORMCOMMITAT(X)OF(T) event occurs in 3 and T is an access to X,
then there is a preceding REQUESTCOMMIT event for T.

9.2.2. Pseudotime Object Automata
A pseudotime object automaton P for an object name X is an 1/O automaton with the following

external action signature.

Input:
CREATE(T), T an access to X
INFORMCOMMIT_AT(X)OF(T)
INFORMABORTAT(X)OF(T)
INFORMTIMEAT(X)OF(T,p), T an access to X, p E P

Output:
REQUEST_COMMIT(T,v), T an access to X

In addition, P may have an arbitrary set of internal actions. P is required to preserve
pseudotime object well-formedness.

9.2.3. Pseudotime Controller
The pseudotime controller guarantees that siblings are assigned disjoint intervals of

pseudotime, and that each transaction's interval is a subset of that of its parent. The pseudotime
controller has the actions of the generic controller together with an extra class of output actions
ASSIGNPSEUDOTIME(T,P) for T # To and P a pseudotime interval. The purpose of the
ASSIGN_PSEUtDOTI!E actions is to construct, at run-time, a sibling order that specifies the
apparent serial ordering of transactions. Also, there is an extra class of actions
INFORMTIMEAT(X)OF(T,p) for access transactions T. A state s of the pseudotime
controller has the same components as a state of the generic controller together with an
additional component s.interval, which is a partial function from 7" to the set of pseudotime
intervals. In the initial state so of the pseudotime controller s0 .interval = ((T0 ,P0)) for some
pseudotime interval P0, and all other components are as in the initial state of the generic
controller.

The transition relation for generic actions is the same as that for the generic controller, except
that the actions CREATE(T) and ABORT(T) have an additional precondition: T e

47

domain(s'.interval). The additional actions are determined as follows.

ASSIGNPSEUDOTIME(T,P)
Precondition:

' e s .create-requested
T o domain(s'.interval)
P s'.interval(parent(T))
P > s'.interval(T') for every T' in siblings(T) r- domain(s'.interval)

Effect:
s.interval = s'.interval u {(T,P)}

INFORMTIMEAT(X)OF(T,p), T an access to X
Precondition:

(T,P) e s'.interval
P = Pmin

The following lemma is straightforward.

Lemma 39:
1. Let T be any transaction name. Then the pseudotime controller preserves

transaction well-formedness for T.

2. Let X be any object name. Then the pseudotime controller preserves
pseudotime object well-formedness for X.

3. The pseudotime controller preserves basic database well-formedness.

9.2.4. Pseudotime Database
A pseudotime database is the composition of a strongly compatible set of automata indexed by

the union of the set of object names and the singleton set [PC} (for "pseudotime controller").
Associated with each object name X is a pseudotime object automaton PX for X. Finally,
associated with the name PC is the pseudotime controller automaton for the system type.

Lemma 40: If 13 is a behavior of a pseudotime database, then for every object name
X, 13IX is pseudotime object well-formed.

Lemma 41: Let B be a pseudotime database. Then B preserves basic database well-
formedness.

It follows that the pseudotime database is an example of a basic database.

9.2.5. Pseudotime Systems
A pseudotime system is the composition of a strongly compatible set of automata indexed by

the union of the set of non-access transaction names, the set of object names and the singleton set
{PC}. Associated with each non-access transaction name T is a transaction automaton AT for T.
Associated with each object name X is a pseudotime object automaton PX for X. Finally,
associated with the name PC is the pseudotime con, ,oller automaton for the system type.

When the particular pseudotime system is clear from context, we call its executions, schedules
and behaviors the pseudotime executions, pseudotime schedules and pseudotime behaviors,
respectively.

48

9.2.6. A Family of Affects Relations
Now we define a family R = {Rp} of affects relations for any particular pseudotime system B.

We do this by first defining a family R' {R'O) of directly-affects relations for B, and then
taking transitive closures. For a sequence 13 of pseudotime actions, define the relation R'P to be
the relation containing the pairs (0, it) of events such that 40 occurs before 7 in P3, and at least one
of the following holds:

* transaction(o) = transaction(n) and i is an output event of the transaction,

* object(o) = object(i) and nt is a REQLEST_COMMIT(T,v) event,

* 0 is a REQUESTCREATE(T) and nt an ASSIGNPSEUDOTIME(T,P) event,

0 4 is an ASSIGNPSEUDOTIME(T,P) and 7c a CREATE(T) event,

* 4) is a REQUESTCOMMIT(T,v) and nt a COMMIT(T) event,

(0 is a REQUESTCREATE(T) and ir an ABORT(T) event,

* 4 is an ASSIGN_PSEUDOTME(T,P) and it an ABORT(T) evc~at,

* 4) is a COMMIT(T) and in a REPORTCOMMIT(T,v) event,

* 4 is an ABCRT) and , a REPORTABORT(T) event,

* 4 is a COMMIT(T) and nt an INFORM_COMMITAT(X)OF(T) event,

0 4 is an ABORT(T) and i an INFORMABORTAT(X)OF(T) event, er

.4) is an ASSIGNPSEUDOTIME(T,P) event anc 7t an
iNFORM_TIME_AT(X)OF(T,p) event.

Once again, define the relation R3 to be the transitive closure of R' 3 . It is easy to see that RD
is an irreflexive partial order. We claim that the family {Rp} defined above is a family of affects
relations for G.

Lemma 42: If 13 is a behavior of pseudotime system B and 7 is an Rp-closed
subsequence of 13, then y is a behavior of B.

Proof: Analogous to the proof of Lemma 36. o
Lemma 43: The family { RD} is a family of affects relations for B.

9.2.7. Applying Orphan Management Algorithms to Pseudotime Systems
The following easy corollary shows that the Argus algorithm and the clocked algorithm

from [16] can both be used for a pseudotime system:
Corollary 44: Let B be a pseudotime system, and R and R' the family of affects and

directly-affects relations defined above. If B is serially correct for non-orphans, then
the following are true:

* Filtered(B,R) is serially correct.

" Argus(B,R') is serially correct.

" Strictly-Filtered(B) is serially correct.

" Ciocked(B) is serially correct.

49

10. Conclusions
We have defined correctness properties for orphan management algorithms, and have

presented precise descriptions and proofs for two algorithms from [9] and [16]. Our proofs are
quite simple, and show that the systems exhibit a substantial degree ot modularity: the orphan
management algorithms can be used in combination with any concurrency control protocol (in
basic system form) that is serially correct for non-orphans. The simplicity of our proofs is a
direct result of this modularity, and is in sharp contrast to earlier work [6], in which the orphan
management algorithm and the concurrency control protocol were not cleanly separated.

Our proofs have an interesting structure. We first define a simple abstract algorithm that uses
global information about the history of the system, and show that it ensures that orphans see
consistent views. We then formalize the Argus algorithm and the clocked algorithm in a way
that only requires the use of local information, and show that each simulates the more abstract
algorithm. The simulation proofs are quite simple, and do not require re-proving the properties
already proved for the abstract algorithm. The correctness of the Argus and clocked algorithmz
then follows directly from the correctness of the abstract algorithm.

In this paper we have analyzed only orphans that result from aborts of transactions. Interesting
algorithms have also been developed for detecting and eliminating orphans arising from
crashes [9, 16]. These algorithms seem more complicated than the algorithms for handling
aborts. An open question is whether the known algorithms for handling crash orphans can be
analyzed using techniques similar to those in this paper. In particular, it would be nice to find a
similar separation of concerns for those algorithms, so that the crash-orphan algorithms can be
understood independently of concurrency control protocols and abort-orphan algorithms.
Whether this will be possible is still unknown.

11. Acknowledgements
We thank Alan Fekete, Ken Goldman and Sharon Perl for their comments on earlier versions

of this work.

50

References

[1] Allchin, J. E.
An architecture for reliable decentralized systems.
PhD thesis, Georgia Institute of Technology, September, 1983.
Available as Technical Report GIT-ICS-83/23.

[2] Aspnes, J., Fekete, A., Lynch, N., Merritt, M. and Weihl, W.
A Theory of Timestamp-Based Concurrency Control for Nested Transactions.
in Proceedings of 14th International Conference on Very Large Data Bases, pages

431-444. August, 1988.

(31 Bernstein, P., Hadzilacos, V. and Goodman, N.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[4] Fekcte, A., Lynch, N., Merritt, M. and Weihl, W.
Commutativity-Based Locking for Nested Transactions.
Technical Memo MIT/LCS/TM-370, Massachusetts Institute Technology, Laboratory for

Computer Science, August, 1988.
Revised version to appear in JCSS.

[5] Goldman, K. and Lynch, N.
Nested Transactions and Quorum Consensus.
In Proceedings of 6th ACM Symposium on Principles of Distributed Computation, pages

27-41. August, 1987.
Expanded version available as Technical Report MIT/LCS/rM-390, Laboratory for

Computer Science, Massachusetts Institute Technology, Cambridge, MA, May 1987.

(61 Goree, J. A.
Internal consistency of a distributed transaction system with orphan detection.
Master's thesis, Massachusetts Institute of Technology, January, 1983.
Available as MIT/LCS/TR-286.

(7] D.L. Detlefs, M.P. Herlihy, and J. M. Wing.
Inheritance of Synchronization and Recovery Properties in Avalon/C++.
IEEE Computer, December, 1988.

[8] Liskov, B., and Scheifler, R.
Guardians and actions: linguistic support for robust, distributed programs.
ACM Transactions on Programming Languages and Systems 5(3):381-404, July, 1983.

[91 Liskov, B., Scheifler, R., Walker, E. F., and Weihl, W.
Orphan Detection.
In Proceedings of the Seventeenth International Symposium on Fault-Tolerant

Computing. IEEE, July, 1987.

[10] Lynch, N. A.
Concurrency control for resilient nested transactions.
Advances in Computing Research 3:335-373, 1986.

51

[11] Lynch, N. A., and Merritt, M.
Introduction to the theory of nested transacti'-r,.
Technical Report MIT-LCS-TR-367, Massachusetts Institute of Technology, 1986.
Also in Theoretical Computer Science 62 (1988), pages 123-185.

[12] Lynch, N. and Merritt, M.
Introduction to the Theory of Nested Transactions.
In International Conference on Database Theory, pages 278-305. Rome, Ita:.,,

September, 1986.

[13] Lynch, N. and Merritt, M. and Weihl, W. and Fekete, A.
Atomic Transactions.
In preparation.

[14] Lynch, N. and T,,ttle, M.
Hierarchical Correctness Proofs for Distributed Algorithms.
In Proceedings of 6th ACM Symposium on Principles of Distributed Computing, pages

137-151. August, 1987.
Expanded version available as Technical Report MIT/LCS/TR-387, Laboratory for

Computer Science, Massachusetts Institute Technology, Cambridge, MA., April
1987.

[15] Lynch, N. and Tuttle, M.
An Introduction to Input/Output Automata.
To be published in Centrum voor Wiskunde en Informatica Quarterly. Also in Technical

Memo, MIT/LCS/TM-373, Lab for Computer Science Massachusetts Institute of
Technology, November 1988.

(16] McKendry, M., and Herlihy, M.
Time-driven orphan elimination.
In Proceedings of the 5th Symposium on Reliability in Distributed Software and

Database Systems, pages 42-48. IEEE, January, 1986.

[i7] McKendry, M., and Herlihy, M.
Timestamp-based orphan elimination.
Technical Report CMU-CS-87-108, Carnegie-Mellon University, 1987.

[18] Moss, J. E. B.
Nested transactions: an approach to reliable distributed computing.
PhD thesis, Massachusetts Institute of Technology, 198 1.
Available as Technical Report Mr/LCS/TR-260.

[19] Nelson, B. J.
Remote procedure call.
PhD thesis, Carnegie-Mellon University Department of Computer Science, May, 1981.
Available as CMU-CS-81-119.

[20] Perl, S.
Distributed Commit Protocols for Nested Atomic Actions.
Master's thesis, Massachusetts Institute Technology, September, 1987.
Available as MIT/LCS/TR-431.

52

[21] Pu, C., and Noe, J. D.
Nested transactions for general objects: the Eden implementation.
Technical Report TR-85-12-03, University of Washington Department of Computer

Science, December, 1985.

[22] Rosenkrantz, D. J., Lewis, P. M., and Stearns, R. E.
System Level Concurrency Control for Distributed Database Systems.
ACM Transactions on Database Systems 3(2):178-198, June, 1978.

[23] Spector, A. and Swedlow, K.
Guide to the Camelot Distributed Transaction Facility: Release 1.
October, 1987
Available from Carnegie Mellon University, Pittsburgh, PA.

[24] Walker, E. F.
Orphan Detection in the Argus System.
Master's thesis, Massachusetts Institute of Technology, May, 1984.
Available as MIT/LCS/TR-326.

[25] Weihl, W. E.
Specification and implementation of atomic data types.
PhD thesis, Massachusetts Institute of Technology, 1984.
Available as Technical Report MIT/LCS/TR-314.

[26] Weihl, W. E.
Local atomicity properties: modular concurrency control for abstract data types.
ACM Transactions on Programming Larguages and Systems, April, 1989.

Table of Contents
1. Introduction 1

1.1. New Results 1
1.2. Related Work 2
1.3. Organization of this Paper 2

2. Formal Preliminaries 4
2.1. The Input/Output Automaton Model 4

2.1.1. Action Signatures 5
2.1.2. Input/Output Automata 5
2.1.3. Executions, Schedules and Behaviors 6

2.2. Composition 7
2.2.1. Composition of Action Signatures 7
2.2.2. Composition of Automata 8
2.2.3. Properties of Systems of Automata 8

2.3. Implementation 9
2.4. Preserving Properties 10

3. Basic Systems 10
3.1. Overview 11
3.2. System Types 11
3.3. General Structure of Basic Systems 12
3.4. Serial Actions 15

3.4.1. Terminology 15
3.4.2. Well-Formedness 16

3.5. Basic Systems 17
3.5.1. Transaction Automata 17
3.5.2. Basic Database Automata 18
3.5.3. Basic Systems 19

3.6. Serial Correctness 20
4. Information Flow 21

4.1. Families of Affects Relations 21
4.2. Families of Directly-Affects Relations 22
4.3. Using Families of Affects Relations to Describe Orphan Management 23

Algorithms
5. Filtered Systems 23

5.1. The Filtered Database 24
5.2. The Filtered System 25
5.3. Simulation of the Basic System by the Filtered System 26

6. Argus Systems 27
6.1. The Argus Database 27
6.2. The Argus System 29
6.3. Simulation of the Basic System by the Argus System 30

7. Strictly Filtered Systems 31
7.1. The Strictly Filtered Database 32
7.2. The Strictly Filtered System 32
7.3. Simulation of the Basic System by the Strictly Filtered System 32

8. Clocked Systems 33
8.1. The Clocked Database 33
8.2. The Clocked System 35
8.3. Simulation of the Basic System by the Clocked System 35

9. Examples 36
9.1. Generic Systems 36

ii

9.1.1. Generic Actions and Well-Formedness 37
9.1.2. Generic Object Automata 37
9.1.3. Generic Controller 38
9.1.4. Generic Database 40
9.1.5. Generic Systems 41
9.1.6. A Family of Affects Relations 41
9.1.7. Applying Orphan Management Algorithms to Generic Systems 43

9.2. Pseudotime Systems 45
9.2.1. Pseudotime Actions and Well-formedness -,

9.2.2. Pseudotime Object Automata 46
9.2.3. Pseudotime Controller 46
9.2.4. Pseudotime Database 47
9.2.5. Pseudotime Systems 47
9.2.6. A Family of Affects Relations 48
9.2.7. Applying Orphan Management Algorithms to Pseudotime 48

Systems
10. Conclusions 49
11. Acknowledgements 49

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies
800 North Quincy Street
Arlington, VA 22217

Attn: Dr. Gary Koop, Code 433

Director, Code 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies
Office of Computing Activities
1800 G. Street, N.W.

Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy
Head, Research Department
Naval Weapons Center

China Lake, CA 93555

. n nnn n i i N i lil|

